What is the upper quartile, Q3, of the following data set? 54, 53, 46, 60, 62, 70, 43, 67, 48, 65, 55, 38, 52, 56, 41
scZoUnD [109]
The original data set is
{<span>54, 53, 46, 60, 62, 70, 43, 67, 48, 65, 55, 38, 52, 56, 41}
Sort the data values from smallest to largest to get
</span><span>{38, 41, 43, 46, 48, 52, 53, 54, 55, 56, 60, 62, 65, 67, 70}
</span>
Now find the middle most value. This is the value in the 8th slot. The first 7 values are below the median. The 8th value is the median itself. The next 7 values are above the median.
The value in the 8th slot is 54, so this is the median
Divide the sorted data set into two lists. I'll call them L and U
L = {<span>38, 41, 43, 46, 48, 52, 53}
U = {</span><span>55, 56, 60, 62, 65, 67, 70}
they each have 7 items. The list L is the lower half of the sorted data and U is the upper half. The split happens at the original median (54).
Q3 will be equal to the median of the list U
The median of U = </span>{<span>55, 56, 60, 62, 65, 67, 70} is 62 since it's the middle most value.
Therefore, Q3 = 62
Answer: 62</span>
Answer:
Step-by-step explanation:
We have given a parallelogram ABCD.
For a parallelogram,
Opposite pair of sides are parallel to each other.
i.e AD is parallel to BC and AB is parallel to CD.
From the attached figure,
∡1 = ∡4 and ∡2 = ∡3 {If two parallel lines cut by a transversal line then alternate interior angles are congruent }
Next, AC ≅ AC {Reflexive identity}
hence, ΔABC ≅ ΔCDA , By Angle-Side-Angle(ASA) congruent property of triangle.
Therefore, AB = CD and AD = BC {Proved}
The vertex form of a quadratic function is:
f(x) = a(x - h)² + k
The coordinate (h, k) represents a parabola's vertex.
In order to convert a quadratic function in standard form to the vertex form, we can complete the square.
y = 2x² - 5x + 13
Move the constant, 13, to the other side of the equation by subtracting it from both sides of the equation.
y - 13 = 2x² - 5x
Factor out 2 on the right side of the equation.
y - 13 = 2(x² - 2.5x)
Add (b/2)² to both sides of the equation, but remember that since we factored 2 out on the right side of the equation we have to multiply (b/2)² by 2 again on the left side.
y - 13 + 2(2.5/2)² = 2(x² - 2.5x + (2.5/2)²)
y - 13 + 3.125 = 2(x² - 2.5x + 1.5625)
Add the constants on the left and factor the expression on the right to a perfect square.
y - 9.875 = 2(x - 1.25)²
Now, we need y to be by itself again so add 9.875 back to both sides of the equation to move it back to the right side.
y = 2(x - 1.25)² + 9.875
Vertex: (1.25, 9.875)
Solution: y = 2(x - 1.25)² + 9.875
Or if you prefer fractions
y = 2(x - 5/4)² + 79/8
Answer: 2/3
Slope = y2-y1/x2-x1
I’ll take the points (-2;0) and (1;2)
Slope = 0-2/-2-1
=-2/-3=2/3