Answer: 2 - 2*sin³(θ) - √1 -sin²(θ)
Step-by-step explanation: In the expression
cos(theta)*sin2(theta) − cos(theta)
sin (2θ) = 2 sin(θ)*cos(θ) ⇒ cos(θ)*2sin(θ)cos(θ) - cos(θ)
2cos²(θ)sin(θ) - cos(θ) if we use cos²(θ) = 1-sin²(θ)
2 [ (1 - sin²(θ))*sin(θ)] - cos(θ)
2 - 2sin²(θ)sin(θ) - cos(θ) ⇒ 2-2sin³(θ)-cos(θ) ; cos(θ) = √1 -sin²(θ)
2 - 2*sin³(θ) - √1 -sin²(θ)
-19/15
you multiply boh sides by the other denomonater
-10 and -9
15 15
Answer:
59
Step-by-step explanation:
Answer:
2x(x + 3)(2x - 1)
Step-by-step explanation:
Given
4x³ + 10x² - 6x ← factor out 2x from each term
= 2x(2x² + 5x - 3) ← factor the quadratic
Consider the factors of the product of the coefficient of the x² term and the constant term which sum to give the coefficient of the x- term
product = 2 × - 3 = - 6 and sum = + 5
The factors are + 6 and - 1
Use these factors to split the x- term
2x² + 6x - x - 3 ( factor the first/second and third/fourth terms )
= 2x(x + 3) - 1(x + 3) ← factor out (x + 3) from each term
= (x + 3)(2x - 1)
Thus
4x³ + 10x² - 6x = 2x(x + 3)(2x - 1) ← in factored form