Answer:
When a particle or a system of particles move in a system where no external force acts, then the total linear momentum of the particle system remains constant.
Explanation:
Given data:
Total mass of the skateboarder, 
Mass of the friend, 
Initial velocity of the skateboarder, 
Initial velocity of the the friend, 
Let the new velocity of the skateboarder when his friend jumps be
.
From the conservation law of linear momentum,


Answer:
approximately 30 degrees
Explanation:
If it takes the cannonball 2 seconds to reach the maximum height, we can use the analysis of the vertical component of the velocity and the fact that the acceleration of gravity is the one acting opposite to this initial vertical component
of the velocity. We know as well that at the top of the trajectory, the vertical component of the velocity is zero, and then the movement starts going down in it trajectory. So, the final velocity for the first part of the ascending movement is zero, giving us the following equation for the velocity under an accelerated movement (with acceleration of gravity "g" acting):

By knowing the vertical component of the initial velocity (19.6 m/s), and the actual magnitude of the total initial velocity (40 m/s), we can calculate what angle was the initial velocity vector forming above the horizontal. We use for such the fact that the sine of the angle relates the opposite side of a right angle triangle with the hypotenuse, and solve for the angle using the arcsin function:

which tells us that the closer answer shown is 
<h2>
Answer: The spreading of waves behind an aperture ismore for long wavelengths and less for short wavelengths</h2>
Here we are talking about Diffraction and, in fact, waves diffract the most when their wavelength is about the same size of the gap or aperture.
Diffraction happens when a wave (mechanical or electromagnetic wave) meets an obstacle or a slit .When this occurs, <u>the wave bends around the corners of the obstacle or passes through the opening of the slit that acts as an obstacle, forming multiple patterns with the shape of the aperture of the slit.
</u>
<u />
Note that the principal condition for the occurrence of this phenomena is that the obstacle must be comparable in size (similar size) to the size of the wavelength.
In other words, when the gap (or slit) size is larger than the wavelength, the wave passes through the gap and does not spread out much on the other side, but when the gap size is equal to the wavelength, maximum diffraction occurs and the waves spread out greatly.
This means the smaller the slit or obstacle (diffracting object), the wider the resulting diffraction pattern, and the greater the obstacle, the narrower de resulting patter.
Answer:1.81
(a) Explanation:the turn ratio= input voltage÷output voltage.
400÷220=1.81.
Don't know how to solve b part...
Wind I believe cause it carries the sand to different places