The important thing to note here is the direction of motion of the test rocket. Since it mentions that the rocket travels vertically upwards, then this motion can be applied to rectilinear equations that are derived from Newton's Laws of Motions.These useful equations are:
y = v₁t + 1/2 at²
a = (v₂-v₁)/t
where
y is the vertical distance travelled
v₁ is the initial velocity
v₂ is the final velocity
t is the time
a is the acceleration
When a test rocket is launched, there is an initial velocity in order to launch it to the sky. However, it would gradually reach terminal velocity in the solar system. At this point, the final velocity is equal to 0. So, v₂ = 0. Let's solve the second equation first.
a = (v₂-v₁)/t
a = (0-30)/t
a = -30/t
Let's substitute a to the first equation:
y = v₁t + 1/2 at²
49 = 30t + 1/2 (-30/t)t²
49 = 30t -15t
49 = 15 t
t = 49/15
t = 3.27 seconds
Answer:
Traveling with a constant velocity means you're going at the same speed in the same direction continuously. If you have a constant velocity, this means you have zero acceleration. ... If you travel with a constant acceleration, your velocity is always changing, but it's changing by a consistent amount each second.
Answer:
Add Ff from Fa
Explanation:
Fnet = sum of all force
horizontal net force = Ff + Fa
Answer:
kinetic friction may be greater than 400 N or smaller than 400 N
Explanation:
As we know that maximum value of static friction on the rough surface is known as limiting friction and the formula of this limiting friction is known as

now when object is sliding on the rough surface then the friction force on that surface is known as kinetic friction and the formula of kinetic friction is known as

now we know that

so here value of limiting static friction force is always more than kinetic friction
also we know that
initially when body is at rest then static friction value will lie from 0 N to maximum limiting friction
and hence kinetic friction may be greater than static friction or if the static friction is maximum limiting friction then kinetic friction is smaller than static friction
so kinetic friction may be greater than 400 N or smaller than 400 N
First, foremost, and most critically, you must look at the graph, and critically
examine its behavior from just before until just after the 5-seconds point.
Without that ability ... since the graph is nowhere to be found ... I am hardly
in a position to assist you in the process.