Answer:
The energies corresponding to each of the allowed orbitals are called energy levels.
Explanation:
A scientist known as Niels Bohr put forward that electrons in an atom covers some permitted orbitals with a specific energy. In other words, the energy of an electron in an atom is not continuous, but 'quantized.' The energies corresponding to each of the allowed orbitals are called energy levels.

It behaves more like a metal
Explanation:
When an element tends to lose its valence electrons in chemical reactions, they behave more like a metal.
Metals are electropositive.
Electropositivity or metallicity is the a measure of the tendency of atoms of an element to lose electrons.
This is closely related to ionization energy and the electronegativity of the element.
- The lower the ionization energy of an element, the more electropositive or metallic the element is .
Metals are usually large size and prefers to be in reactions where they can easily lose their valence electrons.
When most metals lose their valence electrons, they attain stability.
Non-metals are electronegative. They prefer to gain electrons.
learn more:
Reactivity brainly.com/question/6496202
#learnwithBrainly
Answer:
See below
Explanation:
You have to heat the calorimeter to 100 C from 20 C
this will take .20 kg * 390 j /kg-C * 80 C = <u>6240 j</u>
You have to heat the mass of water to boiling point (100 C ) from 20C
this will take
.50 kg * 4182 j/kg-C * 80 = <u>167,280 j </u>
AND you have to add enough heat to boil off .03 kg of water:
.03 kg * (2260000 j/kg-C ) =<u> 67,800 j</u>
<u />
Power = joules / sec = (6240 + 167280 + 67800) / 274.8 =<u> 878 watts </u>
<u />
<u>Your answer may differ just a bit for slightly different or rounded values of specific heat or heat of fusion for water .....</u>
Answer:
B. It is directly proportional to the source charge.
Explanation:
Gauss's law states that the total (net) flux of an electric field at points on a closed surface is directly proportional to the electric charge enclosed by that surface.
This ultimately implies that, Gauss's law relates the electric field at points on a closed surface to the net charge enclosed by that surface.
This electromagnetism law was formulated in 1835 by famous scientists known as Carl Friedrich Gauss.
Mathematically, Gauss's law is given by this formula;
ϕ = (Q/ϵ0)
Where;
ϕ is the electric flux.
Q represents the total charge in an enclosed surface.
ε0 is the electric constant.
Hence, the statement which is true of the electric field at a distance from the source charge is that it is directly proportional to the source charge.
The answer is 175184.08 joules