Answer:
0.64 J/g°C
Explanation:
Using the formula;
Q = m × c × ∆T
Where;
Q = amount of heat
m = mass (g)
c = specific heat capacity
∆T = change in temperature (°C)
In this case:
Q (water) = - Q (metal)
mc∆T (water) = - mc∆T (metal)
According to the information in this question,
For water; m = 100g, c = 4.18J/g°C, ∆T = (25°C - 20°C)
For metal; m = 50g, c =?, ∆T = (25°C - 90°C)
mc∆T (water) = - mc∆T (metal)
100 × 4.18 × (25°C - 20°C) = - {50 × c × (25°C - 90°C)}
100 × 4.18 × 5 = - {50 × c × -65}
2090 = -{-3250c}
2090 = 3250c
c = 2090/3250
c = 0.643
c = 0.64J/g°C
Answer:
1.62
Explanation:
comment section (credits to <em>charlizebarth</em>)+ correct on acellus
Answer:
A theory is a system of ideas intended to explain something, and a hypothesis is an educated guess.
Explanation: Hope this Helps! :)
Answer:
A. There are multiple paths that electrons can take through the circuit, and it is possible for the electron to pass through one circuit component but not another.
Explanation:
Parallel arrangement of components in an electric circuit puts different parts of the circuit on different branches. In a parallel connection, there are multiple paths for the electrons to take, and it is possible for electrons to pass through on circuit component without going through another. This is the reason why If there is a break in one branch of the circuit, electrons can still flow in other branches, and the same reason why one bulb going off in your home does prevent the other components in your home from coming on (your home is wired in a parallel electric circuit).
Answer:
<h2>Heat flows from a warmer object to a cooler object. </h2>