Answer:
0.20kg-m^2
Explanation:
Let the linear velocity of the rope(=of pulley) is v m/s
Using kinematic equation
=> v = u + at
=>v = 0 + 4.9a
=>v = 4.9a ------------ eq1
By v^2 = u^2 + 2as
=>v^2 = 0 + 2 x v/4.9 x 1.2
=>4.9v^2 - 2.4v = 0
=>v(4.9v - 2.4) = 0
=>v = 2.4/4.9 = 0.49 m/s
Thus by v = r x omega
=>omega = v/r = 0.49/0.02 = 24.49 rad/sec
BY W = F x s = 50 x 1.2 = 60 J
=>KE(rotational) = W = 1/2 x I x omega^2
=>60 = 1/2 x I x (24.49)^2
=>I = 0.20 kg-m^2
Answer:
Check the explanation
Explanation:
Kindly check the attached images below to see the step by step explanation to the question above.
Answer:
To calculate the atomic mass of a single atom of an element, add up the mass of protons and neutrons. Example: Find the atomic mass of an isotope of carbon that has 7 neutrons. You can see from the periodic table that carbon has an atomic number of 6, which is its number of protons.
Explanation:
Answer:

Explanation:
We can solve this problem by using Newton's second law of motion, which states that the net force acting on an object is equal to the product between its mass and its acceleration:

where
F is the net force on the object
m is its mass
a is its acceleration
In this problem:
F = 40 N is the force on the object
m = 2 kg is its mass
Therefore, the acceleration of the object is

#1). Anthony does the same amount of work as Angel, with <em>more power</em>.
#2). Power = (Work)/(Time) = 41,000 J / 500 s = <em>82 watts .</em>
#3). Power = (Work) / (Time) = 83 J / 3 sec = <em>27.7 watts</em>