0 N. It's being pushed up the same amount it's being pushed down, so it cancels out.
Answer:
Multiply the wavelength by the frequency.
Explanation:
The velocity of a wave is the frequency times the wavelength.
Answer:
Explanation:
Impulse of reaction force of floor = change in momentum
Velocity of impact = √ 2gh₁
= √ 2 x 9.8 x 1.5 = 5.4 m /s.
velocity of rebound = √2gh₂
= √ 2x 9.8 x 1
= 4.427 m / s.
Initial momentum = .050 x 5.4 = .27 kg m/s
Final momentum = .05 x 4.427 = .22 kg.m/s
change in momentum = .27 - .22 = .05 kg m/s
Impulse = .05 kg m /s
Impulse = force x time
force = impulse / time
.05 / .015 = 3.33 N.
kinetic energy = 1/2 m v²
Initial kinetic energy = 1/2 x .05 x 5.4²
= 0.729 J
Final Kinetic Energy =1/2 x .05 x 4.427²
= 0.489 J
Change in Kinetic energy =0 .24 J
Lost kinetic energy is due to conversion of energy into sound light etc.
Answer:
Mary will have to wait for 63.2 seconds
Explanation:
Time required for the apple to drop from a height of 17.0 m above the ground to 1.65 m above the ground is given by the formula below:
t = √2h/g where h is height through which the object falls, g is acceleration due to gravity
h = 17.0 - 1.65 = 15.35 m
g = 9.8 m/s²
t = √(2 * 15.35/9.8)
t = 1.77 s or approximately 1.8 s
Time taken for bill to get to the point below Mary's window is given below;
time taken = distance/velocity
distance = 130 m; velocity = 2.0 m/s
time taken by Bill = 130/2.0 = 65 s
Therefore, Mary will have to wait for (65 - 1.8) s = 63.2 seconds
Answer:
Explanation:
check attached image for figure, there is supposed to be a figure for this question containing a distance(height of collar at position A) but i will assume 0.2m or 200mm
Consider the energy equilibrium of the system

Here, F is the force acting on the collar,
is the height of the collar at position A, m is the mass of the collar C, g is the acceleration due to gravity,
is the velocity of the collar at position B, and
is the velocity of the collar at A
Substitute 14.4N for F, 0.2m for
, 1.5kg for m,
for g and 0 for 

Therefore, the velocity at which the collar strikes the end B is 4.412m/s