<span>division of Earth's history into time units based largely on the types of life-forms that lived only during certain periods.</span>
Easier to write, easier to read, easier to understand, easier to compare
Explanation:
It is given that,
Mass of golf club, m₁ = 210 g = 0.21 kg
Initial velocity of golf club, u₁ = 56 m/s
Mass of another golf ball which is at rest, m₂ = 46 g = 0.046 kg
After the collision, the club head travels (in the same direction) at 42 m/s. We need to find the speed of the golf ball just after impact. Let it is v.
Initial momentum of golf ball,
After the collision, final momentum
Using the conservation of momentum as :
v = 63.91 m/s
So, the speed of the golf ball just after impact is 63.91 m/s. Hence, this is the required solution.
Given: Mass m = 0.50 Kg; Force = Weight = mg F = (0.50 Kg)(9.8 m/s²)
F = 4.9 N
Displacement x = 3.0 cm convert to meter x = 0.03 m
Required: Spring constant k = "
Formula: F = kx
k = F/x
k = 4.9 N/0.03 m
k = 163.33 N/m