I think this is AWESOME, but I think the last sentence of your conclusion is a bit off. <span> "If someone has an allergy to oil then they can still eat cake because applesauce makes an amazing substitute for oil." I think that you should say "This recipe is great for those who cannot eat/drink oil, the applesauce is an amazing substitute for oil."
I hope I helped! -Wajiha</span>
In a string of length L, the wavelength of the n-th harmonic of the standing wave produced in the string is given by:

The length of the string in this problem is L=3.5 m, therefore the wavelength of the 1st harmonic of the standing wave is:

The wavelength of the 2nd harmonic is:

The wavelength of the 4th harmonic is:

It is not possible to find any integer n such that
, therefore the correct options are A, B and D.
Answer: a) 139.4 μV; b) 129.6 μV
Explanation: In order to solve this problem we have to use the Ohm law given by:
V=R*I whre R= ρ *L/A where ρ;L and A are the resistivity, length and cross section of teh wire.
Then we have:
for cooper R=1.71 *10^-8* 1.8/(0.001628)^2= 11.61 * 10^-3Ω
and for silver R= 1.58 *10^-8* 1.8/(0.001628)^2=10.80 * 10^-3Ω
Finalle we calculate the potential difference (V) for both wires:
Vcooper=11.62* 10^-3* 12 * 10^-3=139.410^-6 V
V silver= 10.80 10^-3* 12 * 10^-3=129.6 10^-6 V
It is most accurate to say that body mass index (BMI) provides information about an individual's height-weight ratio. The correct answer is B.
First establish the summation of the forces acting int the
ladder
Forces in the x direction Fx = 0 = force of friction (Ff) –
normal force in the wall(n2)
Forces in the y direction Fy =0 = normal force in floor (n1)
– (12*9.81) –( 60*9.81)
So n1 = 706.32 N
Since Ff = un1 = 0.28*706.32 = 197,77 N = n2
Torque balance along the bottom of the ladder = 0 = n2(4 m) –
(12*9.81*2.5 m) – (60*9.81 *x m)
X = 0.844 m
5/ 3 = h/ 0.844
H = 1.4 m can the 60 kg person climb berfore the ladder will
slip