Answer:
The lifeguard should run across the shore a distance of 48.074 m before jumpng into the water in order to minimize the time to reach the child.
Step-by-step explanation:
This is a problem of optimization.
We have to minimize the time it takes for the lifeguard to reach the child.
The time can be calculated by dividing the distance by the speed for each section.
The distance in the shore and in the water depends on when the lifeguard gets in the water. We use the variable x to model this, as seen in the picture attached.
Then, the distance in the shore is d_b=x and the distance swimming can be calculated using the Pithagorean theorem:

Then, the time (speed divided by distance) is:

To optimize this function we have to derive and equal to zero:
![\dfrac{dt}{dx}=\dfrac{1}{4}+\dfrac{1}{1.1}(\dfrac{1}{2})\dfrac{2x-120}{\sqrt{x^2-120x+5200}} \\\\\\\dfrac{dt}{dx}=\dfrac{1}{4} +\dfrac{1}{1.1} \dfrac{x-60}{\sqrt{x^2-120x+5200}} =0\\\\\\ \dfrac{x-60}{\sqrt{x^2-120x+5200}} =\dfrac{1.1}{4}=\dfrac{2}{7}\\\\\\ x-60=\dfrac{2}{7}\sqrt{x^2-120x+5200}\\\\\\(x-60)^2=\dfrac{2^2}{7^2}(x^2-120x+5200)\\\\\\(x-60)^2=\dfrac{4}{49}[(x-60)^2+40^2]\\\\\\(1-4/49)(x-60)^2=4*40^2/49=6400/49\\\\(45/49)(x-60)^2=6400/49\\\\45(x-60)^2=6400\\\\](https://tex.z-dn.net/?f=%5Cdfrac%7Bdt%7D%7Bdx%7D%3D%5Cdfrac%7B1%7D%7B4%7D%2B%5Cdfrac%7B1%7D%7B1.1%7D%28%5Cdfrac%7B1%7D%7B2%7D%29%5Cdfrac%7B2x-120%7D%7B%5Csqrt%7Bx%5E2-120x%2B5200%7D%7D%20%5C%5C%5C%5C%5C%5C%5Cdfrac%7Bdt%7D%7Bdx%7D%3D%5Cdfrac%7B1%7D%7B4%7D%20%2B%5Cdfrac%7B1%7D%7B1.1%7D%20%5Cdfrac%7Bx-60%7D%7B%5Csqrt%7Bx%5E2-120x%2B5200%7D%7D%20%3D0%5C%5C%5C%5C%5C%5C%20%20%5Cdfrac%7Bx-60%7D%7B%5Csqrt%7Bx%5E2-120x%2B5200%7D%7D%20%3D%5Cdfrac%7B1.1%7D%7B4%7D%3D%5Cdfrac%7B2%7D%7B7%7D%5C%5C%5C%5C%5C%5C%20x-60%3D%5Cdfrac%7B2%7D%7B7%7D%5Csqrt%7Bx%5E2-120x%2B5200%7D%5C%5C%5C%5C%5C%5C%28x-60%29%5E2%3D%5Cdfrac%7B2%5E2%7D%7B7%5E2%7D%28x%5E2-120x%2B5200%29%5C%5C%5C%5C%5C%5C%28x-60%29%5E2%3D%5Cdfrac%7B4%7D%7B49%7D%5B%28x-60%29%5E2%2B40%5E2%5D%5C%5C%5C%5C%5C%5C%281-4%2F49%29%28x-60%29%5E2%3D4%2A40%5E2%2F49%3D6400%2F49%5C%5C%5C%5C%2845%2F49%29%28x-60%29%5E2%3D6400%2F49%5C%5C%5C%5C45%28x-60%29%5E2%3D6400%5C%5C%5C%5C)

As
, the lifeguard should run across the shore a distance of 48.074 m before jumpng into the water in order to minimize the time to reach the child.
Hey ! there
Answer:
- Simplest fraction form of 85% is <u>1</u><u>7</u><u>/</u><u>2</u><u>0</u><u> </u><u>.</u>
Step-by-step explanation:
Question says that we have to write the <u>simplest</u><u> </u><u>form </u><u>of </u><u>8</u><u>5</u><u>%</u><u> </u><u>as </u><u>it's </u><u>fraction</u><u> </u><u>.</u>
<u>Solution </u><u>:</u><u> </u><u>-</u>

We know that ,
- Percent ( % ) = <u>1</u><u>/</u><u>100</u>
So ,

or ,

Reducing the fraction by cancelling it by 5 :

We get :

Now , we can't reduce 17/20 .
- <u>Henceforth</u><u> </u><u>,</u><u> </u><u>1</u><u>7</u><u>/</u><u>2</u><u>0</u><u> </u><u>is </u><u>the </u><u>simplest</u><u> </u><u>form </u><u>of </u><u>8</u><u>5</u><u>%</u><u> </u><u>.</u>
<h2>
<u>#</u><u>K</u><u>e</u><u>e</u><u>p</u><u> </u><u>Learning</u></h2>
Let one of the numbers be x. The other number cab then be represented as 36-x (x+36-x = 36).
The product can then be represented as y = x(36-x) or y=36x-x2
The maximum or minimum is always on the axis of symmetry which has the formula x=-b/2a.
In our case, the axis of symmetry is -36/-2, so x=18.
If one number is 18 and the 2 numbers add to 36, the other number is 18 as well.
So the 2 numbers are 18 and 18 and the maximum product is 324,
Answer:
9.625 gallons will be used by the painters in 3.5 hours
Step-by-step explanation:
2.75 gallons = 1 hr
X gallons = 3.5 hrs
X = (3.5 × 2.75)/1
X = 9.625 gallons
9.625 gallons will be used by the painters in 3.5 hours