as you already know, the slope of the tangent line is simply the derivative of the function, so
![r=2cos(3\theta )\implies \cfrac{dr}{d\theta }=2\stackrel{chain~rule}{\left[ -sin(3\theta )\cdot 3 \right]} \\\\\\ \left. \cfrac{dr}{d\theta }=-6sin(3\theta ) \right|_{\theta =\frac{\pi }{6}}\implies -6sin\left( 3\cdot \frac{\pi }{6} \right)\implies -6sin\left( \frac{\pi }{2} \right)\implies -6](https://tex.z-dn.net/?f=r%3D2cos%283%5Ctheta%20%29%5Cimplies%20%5Ccfrac%7Bdr%7D%7Bd%5Ctheta%20%7D%3D2%5Cstackrel%7Bchain~rule%7D%7B%5Cleft%5B%20-sin%283%5Ctheta%20%29%5Ccdot%203%20%5Cright%5D%7D%20%5C%5C%5C%5C%5C%5C%20%5Cleft.%20%5Ccfrac%7Bdr%7D%7Bd%5Ctheta%20%7D%3D-6sin%283%5Ctheta%20%29%20%5Cright%7C_%7B%5Ctheta%20%3D%5Cfrac%7B%5Cpi%20%7D%7B6%7D%7D%5Cimplies%20-6sin%5Cleft%28%203%5Ccdot%20%5Cfrac%7B%5Cpi%20%7D%7B6%7D%20%5Cright%29%5Cimplies%20-6sin%5Cleft%28%20%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20%5Cright%29%5Cimplies%20-6)
Try it with some random number, like a=3.
Is "3+0 = 0+3 = 0" true? No.
If you were doing multiplication, then it would be true, but not with addition.
Answer:
Oils
Step-by-step explanation:
:)
Answer:
Answer is given below.
Step-by-step explanation:
3. Option a is correct
we ran a univariate ANOVA for 2 independent variables and 1 dependent variable.
for the bragger condition (truthful or non truthful), we got the F (1,116)=68.646 and p value = 0.000 < 0.01 that necessarily implies that there is no significant main effect of the bragger condition on the likeability of Edward.