Answer:
D)
Explanation:
Carbon.
The electronic configuration is -
Thus, 2s orbital is fully filled and p orbital can singly filled 3 electrons. Thus, Carbon has 2 singly occupied orbitals.
But in methane, it forms 4 bonds. So, 1 electron each from 2s orbital jumps to the next orbital in the p subshell.
Thus, the configuration is:-
Thus, the valence electron configuration is:-
<h3>
Answer:</h3>
Temperature is 529.164 K
<h3>
Explanation:</h3>
We are given
Number of moles of Ne (n) = 0.019135 moles
Volume (V) = 878.3 mL
Pressure (P) = 0.946 atm
We are required to calculate the temperature;
We can do this using the ideal gas law equation which is;
PV = nRT, where P is the pressure, n is the number of moles, V is the volume, R is the ideal gas constant (0.082057 Latm/mol/K) and T is the temperature.
From the equation;
Therefore, the temperature will be 529.164 K.
When you have both of these ( The periodic table of elements and the formula of your compound) you are able to calculate the R.M.M ( Relative atomic mass) of that compound.
For example the formula of a NaCl ( Table salt ) has the elemnt Na and Cl.
We look at the atomic mass of both of these compounds
Na - 23
Cl - 35.5
R.M.M = 23 +35.5 = 58.5
Hope this helps :).
Answer:
Explanation:
mole of NaOH present = molarity x volume
= 1.0 X 0.05 = 0.05 mole
<em>Recommended mole of HCl </em>= 1.1 x 0.05 = 0.055
<em>Mole of HCl carelessly added by Jacob </em>= 1.1 x 0.04 = 0.044
From the equation of reaction:
HCl + NaOH ----> NaCl + H2O
The ratio of mole of HCl to that of NaOH for a complete neutralization reaction is 1:1. However, the recommended mole of HCl (0.055 mole) is more than the mole of NaOH (0.05 mole). <u>Hence, the recommended endpoint of the reaction is supposed to be acidic.</u>
The mole of HCl added by Jacob (0.044) is short of the recommended amount (0.055) and also short of the amount required for a neutral endpoint (0.05). <u>This means that the endpoint will have an excess amount of NaOH and as such, basic instead of the desired acidic endpoint.</u>