Answer:
A the answer is A I'm sure
Answer:
The sphere on the left as it has more mass.
Explanation:
Inertia is the resistance to changes of motion.
Answer:
molality of sodium ions is 1.473 m
Explanation:
Molarity is moles of solute per litre of solution
Molality is moles of solute per kg of solvent.
The volume of solution = 1 L
The mass of solution = volume X density = 1000mL X 1.43 = 1430 grams
The mass of solute = moles X molar mass of sodium phosphate = 0.65X164
mass of solute = 106.6 grams
the mass of solvent = 1430 - 106.6 = 1323.4 grams = 1.3234 Kg
the molality = 
Thus molality of sodium phosphate is 0.491 m
Each sodium phosphate of molecule will give three sodium ions.
Thus molality of sodium ions = 3 X 0.491 = 1.473 m
The order of components in a typical flame atomic absorption spectrometer is hollow cathode lamp--flame--monochromator--detector
<u>Explanation:</u>
- The hollow cathode lamp practices a cathode created of the element of interest with a low internal pressure of inert gas.
- Remove scattered light of other wavelengths from the flame. AAS flame includes aiming at first the fuel than the oxidant and then lighting the flame with the instrument's auto-ignition system. Applying flame Ddtroy any analyte ions and breakdown complexes.
- The process of the monochromator is to divide analytical lines photons moving through the flame
- Photomultiplier tube (PMT) as the detector the PMT determines the intensity of photons of the analytical line exiting the monochromator.
Answer: 207.217 amu
Work:
203.973 amu *(0.014) = 2.855 amu
205.974 amu *(0.241) = 49.639 amu
206.976 amu *(0.221) = 45.741 amu
207.977 amu *(0.524) = 108.979 amu
2.855 + 49.639 + 45.741 + 108.979 = <em><u>207.217amu</u></em>
Explanation: