Answer:
The O atom will tend to attract the electrons.
Explanation:
The electronegativity of O (3.5) is much higher than H (2.1), which means it is more likely to attract electrons. The higher the electronegativity, the more attractive.
Answer:
A
Explanation:
Definitely not in the cell theory
For an element whose third shell contains six electrons, the appropriate electron configuration is; 1s2 2s2 2p6 3s2 3p4.
The electron configuration shows the distribution of electrons in the shells of an atom and in orbitals.
We have been told that the six electrons are found in the third shell. This shell has n=3 and the configuration of this shell must ns2 np4.
The only electron configuration that meets this standard is 1s2 2s2 2p6 3s2 3p4.
Learn more: brainly.com/question/18704022
When The balanced equation is:
2Al + 3CuCl2 ⇒3 Cu + 2AlCl3
So, we want to find the limiting reactant:
1- no. of moles of 2Al = MV/n = (Wt * V )/ (M.Wt*n*V) = Wt / (M.Wt *n)
where M= molarity, V= volume per liter and n = number of moles in the balanced equation.
by substitute:
∴ no. of moles of 2Al = 0.2 / (26.98 * 2)= 0.003706 moles.
2- no.of moles of 3CuCl2= M*v / n = (0.5*(15/1000)) / 3= 0.0025 moles.
So, CuCl2 is determining the no.of moles of the products.
∴The no. of moles of 3Cu = 0.0025 moles.
∴The no.of moles of Cu= 3*0.0025= 0.0075 moles.
and ∵ amount of weight (g)= no.of moles * M.Wt = 0.0075 * M.wt of Cu
= 0.0075 * 63.546 =0.477 g