the time it take for a planet to rotate on its axis makes up its day so if it were slower the day would be longer like earth, it take about 24 hours to make one full rotation.
Now for a year the distance from its star is the largest factor, because the further out the longer it takes to revolve around it, thus making a longer year.
<em>At 25ºC, Kp = 2.9 x 10⁻³ for the reaction NH₄OCONH₂(s) ⇌ 2 NH₃(g) + CO₂(g). In an experiment carried out at 25ºC, a certain amount of NH₄OCONH₂ is placed in an evacuated rigid container and allowed to come to equilibrium. Calculate the total pressure in the container at equilibrium.</em>
Step 1: Make an ICE chart
Solid and liquids are ignored in ICE charts.
NH₄OCONH₂(s) ⇌ 2 NH₃(g) + CO₂(g)
I 0 0
C +2x +x
E 2x x
Step 2: Write the pressure equilibrium constant expression (Kp)
His distance and displacement are the same, which was 400 m
<h3>Further explanation</h3>
Given
Distance = 400 m
time = 2 min
Required
Distance and displacement
Solution
Distance is a scalar quantity that indicates the length of the trajectory that is traveled by an object within a certain interval. Distance has no direction, only has magnitude
Can be simplified distance = totals traveled
Displacement is a vector quantity that shows changes in the position of objects in a certain interval of time. Displacement has magnitude and direction
Can be simplified displacement = distanced traveled from starting point to ending point
From the definition above shows that the displacement and the distance that he traveled have the same value (magnitude), which is equal to 400 m
The value of the two will be different if he starts and finishes at the same point, then the displacement value is zero while the distance he has traveled is still 0
The molecule that could diffuse across the plasma membrane is methane (CH4).
<h3>What is diffusion?</h3>
Diffusion is the movement of fluids or substances from regions of high concentration toward regions of lower concentration.
The plasma membrane is the semipermeable membrane that surrounds the cytoplasm of a cell. The semipermeability means that it allows some molecules through but blocks other substances.
The semipermeable plasma membrane readily allows the passage of small hydrophobic and polar molecules.
Therefore, the molecule that could diffuse across the plasma membrane is methane (CH4).
The question is incomplete. The complete question is :
In science, we like to develop explanations that we can use to predict the outcome of events and phenomena. Try to develop an explanation that tells how much NaOH needs to be added to a beaker of HCl to cause the color to change. Your explanation can be something like: The color change will occur when [some amount] of NaOH is added because the color change occurs when [some condition]. The goal for your explanation is that it describes the outcome of this example, but can also be used to predict the outcome of other examples of this phenomenon. Here's an example explanation: The color of the solution will change when 40 ml of NaOH is added to a beaker of HCl because the color always changes when 40ml of base is added. Although this explanation works for this example, it probably won't work in examples where the flask contains a different amount of HCl, such as 30ml. Try to make an explanation that accurately predicts the outcome of other versions of this phenomenon.
Solution :
Consider the equation of the reaction between NaOH and
NaOH (aq) + HCl (aq) → NaCl(aq) +
The above equation tells us that of reacts with of .
So at the equivalence point, the moles of NaOH added = moles of present.
If the volume of the taken = mL and the conc. of = mole/L
The volume of NaOH added up to the color change = mole/L
Moles of taken = moles.
The color change will occur when the moles of NaOH added is equal to the moles of taken.
Thus when
or when
or mL of NaOH added, we observe the color change.
Where are the volume and molarity of the taken.
is the molarity of NaOH added.
When both the NaOH and are of the same concentrations, i.e. if , then
Or the 40 mL of will need 40 mL of NaOH for a color change and
30 mL of would need 30 mL of NaOH for the color change (provided the concentration )
Las drogas estimulantes son un grupo de medicamentos que tienen un efecto estimulante mental y físico en humanos y animales, estimulando y dando energía al paciente. Ejemplos de psicoestimulantes son cafeína, efedrina, anfetaminas y metilfenidato. Estos se usan en pequeñas dosis para, entre otras cosas, mejorar la atención del paciente y la capacidad de planificación, permitiendo un mayor y mejor rendimiento de la persona durante sus actividades diarias.
A su vez, un depresor es una sustancia que paraliza las funciones del sistema nervioso central, siendo las pastillas para dormir y los sedantes los depresores mas comunes. La acción de los sedantes se basa en su capacidad para activar los mediadores del sistema nervioso central, especialmente el ácido gamma-aminobutírico, causando en el paciente una sensación que puede ir desde la tranquilidad y relajación hasta un estado de somnolencia o incluso la propia inducción al sueño.
Por último, las drogas perturbadoras del sistema nervioso incluyen LSD, cannabis o la cocaína. Algunos efectos típicos son cambios en la visión y el oído, alucinaciones, confusión de sentidos, fuertes experiencias de belleza, disolución del yo y un sentido de unidad, experiencias religiosas y confrontaciones con el subconsciente. Este tipo de drogas son en su gran mayoría ilegales, y no forman parte de tratamientos médicos autorizados.