Answer:
0.758 V.
Explanation:
Hello!
In this case, case when we include the effect of concentration on an electrochemical cell, we need to consider the Nerst equation at 25 °C:

Whereas n stands for the number of moles of transferred electrons and Q the reaction quotient relating the concentration of the oxidized species over the concentration of the reduced species. In such a way, we can write the undergoing half-reactions in the cell, considering the iron's one is reversed because it has the most positive standard potential so it tends to reduction:

It means that the concentration of the oxidized species is 0.002 M (that of nickel), that of the reduced species is 0.40 M and there are two moles of transferred electrons; therefore, the generated potential turns out:

Beat regards!
Answer: You could put the frozen block of ice on the stove and let it melt and eventually boil out leaving the salt behind
Explanation:
Gle's cache of http://www.middleschoolchemistry.com/lessonplans/chapter5/lesson4<span>. It is a snapshot of the page as it appeared on 21 Oct 2017 07:24:57 GMT.</span>
No it is not likely. That is a ratio of 10:4 N^14 and N^15 which doesn’t work. It needs a higher amount
Answer:
17202.6 years
Explanation:
Activity of the living sample (Ao) = 160 counts per minute
Activity of the wood sample (A) = 20 counts per minute
Half life of carbon-14 = 5730 years
t= age of the artifact
From;
0.693/t1/2= 2.303/t log Ao/A
Then;
0.693/ 5730= 2.303/t log Ao/A
Substituting values;
0.693/5730= 2.303/t log (160/20)
Then we obtain;
1.209×10^-4 = 2.0798/t
t= 2.0798/1.209×10^-4
Thus;
t= 17202.6 years
Therefore the artifact is 17202.6 years old.