Answer:
Angle STR = 78°
Step-by-step explanation:
So, since line QS is a straight line, we know that it's 180°. We also know that angles QTR and STR both add up to 180°. That gives us an equation:
20x + 12 + 10x + 33 = 180
Combine like terms
30x + 45 = 180
Subtract 45 from both sides
30x = 135
Divide both sides by 30
x = 4.5
Now we know the value of x. We just need to plug it into angle STR's given value:
10(4.5) + 33 = angle STR
45 + 33 = angle STR
78° = angle STR
Answer:it would be exactly to the other side of y
Step-by-step explanation:
like say -2,1 would reflect as 2,1
Answer:
C ($19.25)
Step-by-step explanation:
First, find how much 1 carton costs, which is $8.75 divided by 5, which is $1.75. So, to find how much 11 cartons cost, we just multiply by 11 to get [tex]\boxed{\$19.25}[\tex]
If quadrilateral JKLM has given values, as well as quadrilateral ABCD, it can be concluded from the given values if JKLM is a result of a dilation of ABCD by a scale factor of 2. Dilation factor is used to scale up a given figure. If ABCD has measurements of 1, 2, 3, and 4. Then the measurements of JKLM should be 4, 8, 12, and 16.
the equilibrium point, is when Demand = Supply, namely, when the amount of "Q"uantity demanded by customers is the same as the Quantity supplied by vendors.
That occurs when both of these equations are equal to each other.
let's do away with the denominators, by multiplying both sides by the LCD of all fractions, in this case, 12.
![\bf \stackrel{\textit{Supply}}{-\cfrac{3}{4}Q+35}~~=~~\stackrel{\textit{Demand}}{\cfrac{2}{3}Q+1}\implies \stackrel{\textit{multiplying by 12}}{12\left( -\cfrac{3}{4}Q+35 \right)=12\left( \cfrac{2}{3}Q+1 \right)} \\\\\\ -9Q+420=8Q+12\implies 408=17Q\implies \cfrac{408}{17}=Q\implies \boxed{24=Q} \\\\\\ \stackrel{\textit{using the found Q in the Demand equation}}{P=\cfrac{2}{3}(24)+1}\implies P=16+1\implies \boxed{P=17} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill \stackrel{Equilibrium}{(24,17)}~\hfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Ctextit%7BSupply%7D%7D%7B-%5Ccfrac%7B3%7D%7B4%7DQ%2B35%7D~~%3D~~%5Cstackrel%7B%5Ctextit%7BDemand%7D%7D%7B%5Ccfrac%7B2%7D%7B3%7DQ%2B1%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bmultiplying%20by%2012%7D%7D%7B12%5Cleft%28%20-%5Ccfrac%7B3%7D%7B4%7DQ%2B35%20%5Cright%29%3D12%5Cleft%28%20%5Ccfrac%7B2%7D%7B3%7DQ%2B1%20%5Cright%29%7D%20%5C%5C%5C%5C%5C%5C%20-9Q%2B420%3D8Q%2B12%5Cimplies%20408%3D17Q%5Cimplies%20%5Ccfrac%7B408%7D%7B17%7D%3DQ%5Cimplies%20%5Cboxed%7B24%3DQ%7D%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Busing%20the%20found%20Q%20in%20the%20Demand%20equation%7D%7D%7BP%3D%5Ccfrac%7B2%7D%7B3%7D%2824%29%2B1%7D%5Cimplies%20P%3D16%2B1%5Cimplies%20%5Cboxed%7BP%3D17%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20%5Cstackrel%7BEquilibrium%7D%7B%2824%2C17%29%7D~%5Chfill)