Answer:
When melted or dissolved in water.
Explanation:
Potassium bromide in its solid form contains ions, which are charged atoms. Through the heating process, the melted potassium bromide becomes an ionic liquid. If solid potassium bromide is dissolved, for example in water, the resulting release of ions allows it to conduct electricity.
Answer:
the true statement is... The pH of the weak acid will be higher than the pH of the strong acid
Explanation:
pH is a measured of the extent to which acids dissociate into ions when plced in aqueous solution.
Strong acid dissociate near-completely, and weak acids barely dissociate.
At equal concentrations, a strong acid will have a lower pH than a weak acid, since the strong one will donate more proton to the solution.
Answer:
3.62x10⁻⁷ = Kb
Explanation:
The acid equilibrium of a weak acid, HX, is:
HX + H₂O ⇄ X⁻ + H₃O⁺
Where Ka = [X⁻] [H₃O⁺] / [HX]
And basic equilibrium of the conjugate base, is:
X⁻ + H₂O ⇄ OH⁻ + HX
Where Kb = [OH⁻] [HX] / [X⁻]
To convert Ka to Kb we must use water equilibrium:
2H₂O ⇄ H₃O⁺ + OH⁻
Where Kw = 1x10⁻¹⁴ = [OH⁻] [H₃O⁺]
Thus, we can obtain:
Kw = Ka*Kb
Solving for Kb:
Kw / Ka = Kb
1x10⁻¹⁴ / 2.76x10⁻⁸ =
3.62x10⁻⁷ = Kb
Number of moles = mass of product / molecular mass
=mass of product (MgO) / 40.3
Since the mass of MgO is not given in the question, the correct answer choice cannot be given. However, proceeding witht eh above formula will enable you to find the correct number of moles given the mass of MgO.