The mass for of aluminum that is produced by the decomposition of 5.0 Kg Al2O3 is 2647 g or 2.647 Kg
calculation
Write the equation for decomposition of Al2O3
Al2O3 = 2Al + 3 O2
find the moles of Al2O3 = mass/molar mass
convert 5 Kg to g = 5 x1000 = 5000 grams
molar mass of Al2O3 = 27 x2 + 16 x3 = 102 g/mol
moles =5000 g/ 102 g/mol = 49.0196 moles
by use of mole ratio between Al2O3 to Al which is 1:2 the moles of Al = 49.0196 x2 =98.0392 moles
mass of Al = moles x molar mass
= 98.0392 moles x 27g/mol = 2647 grams or 2647/1000 = 2.647 Kg
The correct answer to your question is B, solvent.
let me know if you have any further questions
:)
Answer:
Oiling is done on a regular basis to sewing Machine because in the machine there are lots of machinery parts i.e. wheels and axels, etc. which are in continuous use and they possess so much frictional force between them that wear tear may be observed in those parts.
Because so objects are denser than water and some are less dense than water
Answer:
Choice A: approximately
.
Explanation:
Note that the unit of concentration,
, typically refers to moles per liter (that is:
.)
On the other hand, the volume of the two solutions in this question are apparently given in
, which is the same as
(that is:
.) Convert the unit of volume to liters:
.
.
Calculate the number of moles of
formula units in that
of the
solution:
.
Note that
(sulfuric acid) is a diprotic acid. When one mole of
completely dissolves in water, two moles of
ions will be released.
On the other hand,
(sodium hydroxide) is a monoprotic base. When one mole of
formula units completely dissolve in water, only one mole of
ions will be released.
ions and
ions neutralize each other at a one-to-one ratio. Therefore, when one mole of the diprotic acid
dissolves in water completely, it will take two moles of
to neutralize that two moles of
produced. On the other hand, two moles formula units of the monoprotic base
will be required to produce that two moles of
. Therefore,
and
formula units would neutralize each other at a two-to-one ratio.
.
.
Previous calculations show that
of
was produced. Calculate the number of moles of
formula units required to neutralize that
.
Calculate the concentration of a
solution that contains exactly
of
formula units:
.