Answer:
1.89 g CaCO₃
Explanation:
You will have to use stoichiometry for this question. First, look at the chemical equation.
Na₂CO₃ + CaCl₂ ==> 2 NaCl + CaCO₃
From the above equation, you can see that for one mole of Na₂CO₃, you will produce one mole of CaCO₃. This means that however many moles of Na₂CO₃ you have in the beginning, you will have the same amount of moles of CaCO₃, theoretically speaking.
So, convert grams to moles. You should get 0.0189 mol Na₂CO₃. This means that you will get 0.0189 mol CaCO₃. I'm not sure what units you want the answer in, but I'm going to give it in grams. Convert moles to grams. Your answer should be 1.89 g.
Answer
B,C,D,E
Explanation:
Hydrogen bonds in water forms a tetrahedral ( four sided structure) and not a six sided structure.
The hydrogen bonds are needed to be broken first when heat is applied to change from one state to another.It makes room for more heat to be applied than the required amount which signifies a higher latent heat of melting or vaporization and also a higher heat capacity .
Answer:
Up to 80 - 120 days.
Explanation:
The flower will probably stay six to twelve days or so.
I'm not sure what's your hypothesis going to be, but I'll give you an example.
" <em>If</em> I __________, <em>then</em> the sunflower will grow up to 80 to 120 days."
In the blank space, you can write what you're going to do to your sunflower during the experiment.
Please correct me if I'm wrong.
<span>When carbon dioxide is passed through water, some of it dissolves. A small fraction of the dissolved CO2 interacts with the water to become carbonic acid, H2CO3.</span>