Answer:
F = 0.0725 N
Explanation:
Given that,
The mass of peach, m = 7.4 g
We need to find the force acts on the peach when it falls from a tree. The force is given by :
F = mg
So,

So, the force is 0.0725 N.
Answer:
It donates a hydrogen ion
Explanation:
Under the Bronsted-Lowry definition of an acid, acids are protons donors which donate the H+ ion, or the hydrogen ion.
Answer:
The 12L helium tank pressurized to 160 atm will fill <em>636 </em>3-liter balloons
Explanation:
It is possible to answer this question using Boyle's law:

Where P₁ is the pressure of the tank (160atm), V₁ is the volume of the tank (12L), P₂ is the pressure of the balloons (1atm, atmospheric pressure) And V₂ is the volume this gas will occupy at 1 atm, thus:
160atm×12L = 1atm×V₂
V₂ = 1920L
As the tank will never be empty, the volume of the gas able to fill balloons is the total volume minus 12L, thus the volume of helium able to fill balloons is:
1920L - 12L = 1908L
1908L will fill:
1908L×
= <em>636 balloons</em>
<em></em>
I hope it helps!
Using Daltons Law which states that the total pressure of a gas mixture is the sum of the gasses partial pressure.Thus,
Pt(total pressure)= P1+P2+P3
where
Pt= 0.90 atm
P1= 0.26 atm
P2 = 0.28 atm
P3 = ?
substitute the formula with known variables
P3= 0.90 atm-(0.26atm+0.28atm)
P3 = 0.36 atm
The partial pressure of ammonia is 0.36 atm
Answer:
6.022 × 10²³ molecules of B₂H₆
Explanation:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
18 g of water = 1 mole = 6.022 × 10²³ molecules of water
1.008 g of hydrogen = 1 mole = 6.022 × 10²³ atoms of hydrogen
B₂H₆ molecules:
21.63 g = one mole of B₂H₆= 6.022 × 10²³ molecules of B₂H₆