Answer:
B: parallel
Explanation:
because a parallel circuit has two or more paths for current to flow through. Voltage is the same across each component of the parallel circuit. The sum of the currents through each path is equal to the total current that flows from the source.
Answer:
sure what u need help with
Explanation:
C. PH3 represents a compound commonly known as phosphine, whose IUPAC name is phosphorus trihydride.
<h3>What type of bond is PH3?</h3>
The electronegativity of PH3 found in the Periodic Table of the Period attracts covalent electron pairs and creates covalent bonds. However, because the electrons are not bound, asymmetrical rate distribution occurs. Therefore, PH3 is a polar molecule with a non-polar covalent bond and currently has no polar bond.
<h3 /><h3>What defines a covalent bond?</h3>
A covalent bond consists of sharing one or more electron pairs between two atoms. These electrons are attracted to two nuclei at the same time. Covalent bonds are formed when the difference in electronegativity between two atoms is too small for electron transfer to form ions.
Click here for more information on covalent bonds brainly.com/question/12732708
# SPJ10
B. White Dwarf.
<h3>Explanation</h3>
The star would eventually run out of hydrogen fuel in the core. The core would shrink and heats up. As the temperature in the core increases, some of the helium in the core will undergo the triple-alpha process to produce elements such as Be, C, and O. The triple-alpha process will heat the outer layers of the star and blow them away from the core. This process will take a long time. Meanwhile, a planetary nebula will form.
As the outer layers of gas leave the core and cool down, they become no longer visible. The only thing left is the core of the star. Consider the Chandrasekhar Limit:
Chandrasekhar Limit:
.
A star with core mass smaller than the Chandrasekhar Limit will not overcome electron degeneracy and end up as a white dwarf. Most of the outer layer of the star in question here will be blown away already. The core mass of this star will be only a fraction of its
, which is much smaller than the Chandrasekhar Limit.
As the star completes the triple alpha process, its core continues to get smaller. Eventually, atoms will get so close that electrons from two nearby atoms will almost run into each other. By Pauli Exclusion Principle, that's not going to happen. Electron degeneracy will exert a strong outward force on the core. It would balance the inward gravitational pull and prevent the star from collapsing any further. The star will not go any smaller. Still, it will gain in temperature and glow on the blue end of the spectrum. It will end up as a white dwarf.
43 degrees
angle of reflection is equal to the angle of incidence