Answer:
The boiling point is 308.27 K (35.27°C)
Explanation:
The chemical reaction for the boiling of titanium tetrachloride is shown below:
Ti
⇒ Ti
ΔH°
(Ti
) = -804.2 kJ/mol
ΔH°
(Ti
) = -763.2 kJ/mol
Therefore,
ΔH°
= ΔH°
(Ti
) - ΔH°
(Ti
) = -763.2 - (-804.2) = 41 kJ/mol = 41000 J/mol
Similarly,
s°(Ti
) = 221.9 J/(mol*K)
s°(Ti
) = 354.9 J/(mol*K)
Therefore,
s° = s° (Ti
) - s°(Ti
) = 354.9 - 221.9 = 133 J/(mol*K)
Thus, T = ΔH°
/s° = [41000 J/mol]/[133 J/(mol*K)] = 308. 27 K or 35.27°C
Therefore, the boiling point of titanium tetrachloride is 308.27 K or 35.27°C.
Unlikely. It's unlikely for ammonium ion
to accept a proton
and act as a Bronsted-Lowry Acid.
<h3>Explanation</h3>
What's the definition of Bronsted-Lowry acids and bases?
- Bronsted-Lowry Acid: a species that can donate one or more protons
in a reaction.
- Bronsted-Lowry Base: a species that can accept one or more protons

Ammonium ions
are positive. Protons
are also positive.
Positive charges repel each other, which means that it will be difficult for
to accept any additional protons. As a result, it's unlikely that
will accept <em>any</em> proton and act like a Bronsted-Lowry Base.
Because they're not confident enough to confirm it's indeed true but they will support it for they believe it's correct.
And this is y I should of paid attention in that one science class in middle school that taught this...
( ̄▽ ̄;)
It would be A bc carbon is NOT usually a product. You can find out more about the by searching combustion reactions, then u should be able to answer the questions on your own.