Answer:
P (H₂) = 741 torr
Explanation:
Let's begin by listing out the given parameters:
Temperature (water) = 298 K, volume = 45.6 mL,
atmospheric pressure, P (total) = 765 torr, vapor pressure of water, P (H₂O) = 24 torr
To get the pressure of inside the tube, P (H₂), we apply Dalton's Law of Partial Pressure and we have:
P (total) = P (H₂) + P (H₂O)
P (total) = 765 torr, P (H₂O) = 24 torr
P (H₂) = P (total) - P (H₂O) = 765 - 24
P (H₂) = 741 torr
It therefore becomes clear that the pressure of H₂(g) is 741 torr
Answer: the heavy ball of a demolition machine is storing energy when it is held at an elevated position.
Which has potential energy
Explanation:
Answer is: 9623.85 kJ of heat is <span>transferred from iron ingot.
</span>m(Fe) = 24.7 kg · 1000 g/kg = 24700 g; mass of iron ingot.
C = 0.4494 J/g°C; t<span>he specific heat of iron
</span>ΔT = 880°C - 13°C; temperature <span>difference.</span>
ΔT = 867°C.
Q = m·C·ΔT.
Q = 24700 g · 0.4494 J/g°C ·867°C.
Q = 9623856.06 J ÷ 1000J/kJ.
Q = 9623.85 kJ.