Answer:
100,048
Explanation:
K.E = 1/2 m (v)^2
K.E = 1^/2 * 74 * (52)^2
K.E = 100,048J =100.048kJ
Answer:
0.699 L of the fluid will overflow
Explanation:
We know that the change in volume ΔV = V₀β(T₂ - T₁) where V₀ = volume of radiator = 21.1 L, β = coefficient of volume expansion of fluid = 400 × 10⁻⁶/°C
and T₁ = initial temperature of radiator = 12.2°C and T₂ = final temperature of radiator = 95.0°C
Substituting these values into the equation, we have
ΔV = V₀β(T₂ - T₁)
= 21.1 L × 400 × 10⁻⁶/°C × (95.0°C - 12.2°C)
= 21.1 L × 400 × 10⁻⁶/°C × 82.8°C = 698832 × 10⁻⁶ L
= 0.698832 L
≅ 0.699 L = 0.7 L to the nearest tenth litre
So, 0.699 L of the fluid will overflow
Answer:
x = 2.044 m
Explanation:
given data
initial vertical component of velocity = Vy = 2sin18
initial horizontal component of velocity = Vx = 2cos18
distance from the ground yo = 5m
ground distance y = 0
from equation of motion


solving for t
t = 1.075 sec
for horizontal motion

x = 2cos18*1.075
x = 2.044 m
The magnitude of the downward acceleration of the hollow cylinder is 6m/s^2.
Z = I α
T.R =1/2 M (
+
)α
T.R = 1/2M 5
/4 α
T = 5Ma/8
Mg - T = Ma
Mg - 5Ma/8 = Ma
Mg= 5Ma/8 + Ma = 13Ma / 8
acceleration = 8g/13 = 6 m/s^2
The rate at which an object's velocity with respect to time changes is called its acceleration. The direction of the net force imposed on an item determines its acceleration in relation to that force. According to Newton's Second Law, the magnitude of an object's acceleration is the result of two factors working together
The size of the net balance of all external forces acting on that item is directly proportional to the magnitude of this net resultant force; the magnitude of that object's mass, depending on the materials from which it is built, is inversely related to its mass.
Learn more about acceleration here:
brainly.com/question/2303856
#SPJ4
Answer:
The answer is A because the equation is KEi+PEi=KEf+PEf
i means initial (before) and f means final (after)