Answer:
Explanation:
Let the tension in the cord be T₁ and T₂ .
for motion of block placed on horizontal table
T₁ = m a , a is acceleration of the whole system .
for motion of hanging bucket of mass m
mg - T₂ = ma
adding the two equation
mg + T₁- T₂ = 2ma
for rotational motion of the pulley
torque = moment of inertia x angular acceleration
(T₂ - T₁) R = I x α , I is moment of inertia of pulley , α is angular acceleration .
(mg - 2ma ) R = I x α
(mg - 2ma ) R = I x a / R
(mg - 2ma ) R² = I x a
mgR² = 2ma R² + I x a
a = mgR² / (2m R² + I )
Since body moves by distance d in time T
d = 1/2 a T²
a = 2d / T²
mgR² / (2m R² + I ) = 2d / T²
mgR²T² = 2d x (2m R² + I )
mgR²T² - 4dm R² = 2dI
m R² ( gT² - 4d ) = 2dI
I = m R² ( gT² - 4d ) ] / 2d .
Answer:
102597.6 Pa
Explanation:
mass, m = 1.25 g
Force, F = m x g = 1.25 x 9.8 x 10^-3 = 0.01225 N
radius, r = 0.195 mm = 0.195 x 10^-3 m
Area, A = πr² = 3.14 x 0.195 x 0.195 x 10^-6 m^2
A = 1.19 x 10^-7 m^2
Pressure is defined as the thrust acting per unit area.
P = Force / Area
P = 0.01225 N / (1.10 x 10^-7)
P = 102597.6 Pa
Thus, the pressure exerted is 102597.6 Pa.
B. Light refracts as it passes through a lens.
The bending of a ray of light also occurs when light passes into and out of a glass lens. ... Because a convex lens can cause rays of light to converge, it can produce an image on a screen.