Answer:
The ratio of the momentum imparted to gun #1 to that imparted to gun #2 is equal to 2 : 1
Explanation:
Detailed explanation and calculation is shown in the image below
Answer:
The transverse wave will travel with a speed of 25.5 m/s along the cable.
Explanation:
let T = 2.96×10^4 N be the tension in in the steel cable, ρ = 7860 kg/m^3 is the density of the steel and A = 4.49×10^-3 m^2 be the cross-sectional area of the cable.
then, if V is the volume of the cable:
ρ = m/V
m = ρ×V
but V = A×L , where L is the length of the cable.
m = ρ×(A×L)
m/L = ρ×A
then the speed of the wave in the cable is given by:
v = √(T×L/m)
= √(T/A×ρ)
= √[2.96×10^4/(4.49×10^-3×7860)]
= 25.5 m/s
Therefore, the transverse wave will travel with a speed of 25.5 m/s along the cable.
<h3>
Answer:</h3>
30.4 km/hr
<h3>
Explanation:</h3>
<u>We are given</u>;
- Speed in the first 2 hours as 25 km/hr
- Speed in the next 3 hours as 34 km/hr
We are required to determine the average velocity in km/hr
- To get the average velocity we divide total distance by total time.
- Thus, we need to determine the total distance
Distance = Speed × time
Distance covered in the first 2 hours;
= 25 km/hr × 2 hours
= 50 km
Distance in the next 3 hours
= 34 km/hr × 3 hours
= 102 km
Therefore, total distance = 50 km + 102 km
= 152 km
Total time = 2 hrs + 3 hrs
= 5 hours
Therefore;
Average speed = 152 km ÷ 5 hours
= 30.4 km/hr
Thus, the average speed is 30.4 km/hr