1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iren2701 [21]
3 years ago
6

A 220 kg crate hangs from the end of a rope of length L = 14.0 m. You push horizontally on the crate with a varying force F to m

ove it 4.00 m to the side.
(a) What is the magnitude of F when the crate is in this final position? During the crate's displacement, what are
(b) the total work done on it,
(c) the work done by the gravitational force on the crate, and
(d) the work done by the pull on the crate from the rope?
(e) Knowing that the crate is motionless before and after its displacement, use the answers to (b), (c), and (d) to find the work your force F does on the crate.
(f) Why is the work of your force not equal to the product of the horizontal displacement and the answer to (a)?
Physics
1 answer:
kifflom [539]3 years ago
7 0

<u>Answer</u>:

(a) magnitude of F = 797 N

(b)the total work done  W = 0

(c)work done by the gravitational force =  -1.55 kJ

(d)the work done by the pull  = 0

(e) work your force F does on the crate = 1.55 kJ

<u>Explanation</u>:

<u>Given</u>:

Mass of the crate, m =  220 kg

Length of the rope, L = 14.0m

Distance, d =  4.00m

<u>(a) What is the magnitude of F when the crate is in this final position</u>

Let us first determine vertical angle as follows

=>Sin \theta = \frac{d }{L}

=> \theta = Sin^{-1} \frac{d}{L} =

Now substituting thje values

=> \theta = Sin^{-1} \frac{4}{12} =

=> \theta = Sin^{-1} \frac{1}{3}

=> \theta = Sin^{-1}(0.333)

=> \theta = 19.5^{\circ}

Now the tension in the string resolve into components

The vertical component supports the weight

=>Tcos\theta = mg

=>T = \frac{mg}{cos\theta}

=>T = \frac{230 \times 9.8 }{cos(19.5)}

=>T = \frac{2254 }{cos(19.5)}

=>T = \frac{2254 }{0.9426}

=>T =2391N

Therefore the horizontal force

F = TSin(19.5)

F = 797 N

b) The total work done on it

As there is no change in Kinetic energy

The total work done W = 0

<u>c) The work done by the gravitational force on the crate</u>

The work done by gravity

Wg = Fs.d = - mgh

Wg = - mgL ( 1 - Cosθ )

Substituting the values                                                            

= -230 \times 9.8\times 12 ( 1 - cos(19.5) )

= -230 \times 9.8\times 12 ( 1 - 0.9426) )

= -230 \times 9.8\times 12 (0.0574)

= -230 \times 9.8\times 0.6888

=  -230 \times 6.750

= -1552.55 J

The work done by gravity = -1.55 kJ

<u>d) the work done by the pull on the crate from the rope</u>

Since the pull  is perpendicular to the direction of motion,

The work done = 0

e)Find the work your force F does on the crate.

Work done by the Force on the crate

WF = - Wg  

WF = -(-1.55)

WF = 1.55 kJ

<u>(f) Why is the work of your force not equal to the product of the horizontal displacement and the answer to (a)</u>

Here the work done by force is not equal to F*d  

and it is equal to product of the cos angle and F*d

So, it is not equal to the product of the horizontal displacement and the answer to (a)      

You might be interested in
Hola me pueden ayudar con este problema de física....por favor mirar la imagen.. gracias
makkiz [27]
Si la velocidad es 3 m/s, y ellos quieren saber la distancia despues 2 segundos, necesita que multiplicar 2 y 3.

La respeusta debiera ser 6m.
8 0
2 years ago
Ety ratio
horrorfan [7]

3) The work done is D. zero

4) The kinetic energy is B. 180 J

5) The potential energy is A. 120 J

6) The work done depends on B. position

7) The example of non-renewable energy is C. coal

8) The power expended is 3\cdot 10^4 W

9) The efficiency is A. 100%

10) The velocity ratio is 5

Explanation:

3)

The work done by a force acting an object is given by:

W=Fd cos \theta

where :

F is the magnitude of the force

d is the displacement

\theta is the angle between the direction of the force and the displacement

When the force is applied perpendicular to the direction of motion,

\theta=90^{\circ}

Therefore, the work done is:

W=Fd(cos 90^{\circ})=0

4)

The kinetic energy of a body is given by

K=\frac{1}{2}mv^2

where

m is the mass of the body

v is its speed

For the girl in this problem, we have

m = 40 kg

v = 3 m/s

Therefore her kinetic energy is

K=\frac{1}{2}(40)(3)^2=180 J

5)

The potential energy of an object is given by

PE=mgh

where

m is the mass

g=10 m/s^2 is the acceleration of gravity

h is the heigth of the object relative to the ground

For the ball in this problem,

m = 0.4 kg

h = 30 m

So, the potential energy is

PE=(0.4)(10)(30)=120 J

6)

A conservative field is a field for which the work done by the field on an object does not depend on the path taken, but only on the initial and final position of the object.

Gravitational and electric fields are examples of conservative fields. In fact:

  • When an object is pulled down by gravity (free fall), the work done by the gravitational field only depends on the change in height \Delta h between the two points, not on the path taken during the fall
  • When an electric charge is pushed by the electric field, the work done by the field depends only on the initial and final position of the charge in the field

For any conservative field, it is possible to define a "potential" function, which represents the energy per unit mass/charge, and depends only on the position of the object.

7.

  • Non-renewable energy sources are sources of energy whose rate of consumption is faster than the rate at which they are re-created. Examples of non-renewable sources are coal, oil, natural gas. These energy sources are consumed at a fast rate, while they take million of years to regenerate, so at the current rate they will eventually run out.
  • Renewable energy sources are sources of energy that replenish at faster rate than the rate at which it is consumed. Examples of renewable sources are solar energy, wind, hydroelectric power.

Therefore, the example of non-renewable energy in this case is

C. Coal

8.

For an object pushed by a force F and moving at a constant velocity v, the power expended is given by

P=Fv

where F is the force and v is the velocity.

for the rocket in this problem, we have:

F = 10 N is the force propelling the rocket

v = 3000 m/s is its velocity

Substituting into the equation, we find the power expended:

P=(10)(3000)=30,000 W = 3\cdot 10^4 W

9.

The efficiency of a machine is given by

\eta = \frac{W_{out}}{W_{in}}

where

W_{in} is the energy in input to the machine

W_{out} is the useful work in output from the machine

For a real machine, the useful work in output is always lower than the energy input, because part of the energy is "wasted" and converted into thermal energy due to the presence of internal frictions. However, for an ideal machine, all the input energy is converted into useful work, so

W_{out}=W_{in}

And therefore the efficiency is

\eta=1

which means 100%.

10.

The velocity ratio of a block and tackle system is the ratio between the distance moved by the effort and the distance moved by the load.

VR=\frac{d_{eff}}{d_{load}}

In a block and tackle system, the velocity ratio is also equal to the number of pulleys in the system.

For the system in the problem, there are 5 pulleys: therefore, this means that when the effort moves 5 metres, the load moves 1 metres, therefore the velocity ratio is

VR=\frac{5}{1}=5

Learn more about kinetic and potential energy:

brainly.com/question/6536722

brainly.com/question/1198647

brainly.com/question/10770261

#LearnwithBrainly

5 0
3 years ago
An astronomer is measuring the electromagnetic radiation emitted by two stars, both of which are assumed to be perfect blackbody
Lorico [155]
There is not enough information to draw a conclusion about
5 0
2 years ago
A bar magnet was placed underneath a sheet of paper where a pile of iron filings sits. In the presence of the energy stored in t
Naya [18.7K]

Answer: 1. The field energy will increase

2. The energy increases, and the lines of force are denser

3. It points toward the field of earths magnetic poles

4. 1 and 2 only

5. 2, 4, 1, 3

Explanation: just took it

4 0
2 years ago
How does the direction of the electric current, moving across a battery powered device, differ from the direction of travel in t
svetoff [14.1K]
They both have different wave traction's
8 0
3 years ago
Read 2 more answers
Other questions:
  • 1. Two charges Q1( + 2.00 μC) and Q2( + 2.00 μC) are placed along the x-axis at x = 3.00 cm and x=-3 cm. Consider a charge Q3 of
    9·1 answer
  • The floor of a railroad flatcar is loaded with loose crates having a coefficient of static friction of 0.420 with the floor. If
    7·1 answer
  • How are landslides and mudflows similar
    5·1 answer
  • A 2.0-kg object moving 5.0 m/s collides with and sticks to an 8.0-kg object initially at rest. Determine the kinetic energy lost
    11·1 answer
  • How do you find density of a liquid
    10·1 answer
  • How can you differentiate between elements and compounds​
    10·1 answer
  • In this circuit the resistance R1 is 7 Ω and R2 is 3 Ω. If this combination of resistors were to be replaced by a single resisto
    11·1 answer
  • Two stationary point charges of 3.00 nC and 2.00 nC are separated by a distance of 50.0 cm. An electron is released from rest at
    14·1 answer
  • Why mercury is preferred over alcohol in thermometer
    9·1 answer
  • State the ohm's law in words​
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!