1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ArbitrLikvidat [17]
4 years ago
13

A Tennis ball falls from a height 40m above the ground the ball rebounds

Physics
1 answer:
worty [1.4K]4 years ago
4 0

If the ball is dropped with no initial velocity, then its velocity <em>v</em> at time <em>t</em> before it hits the ground is

<em>v</em> = -<em>g t</em>

where <em>g</em> = 9.80 m/s² is the magnitude of acceleration due to gravity.

Its height <em>y</em> is

<em>y</em> = 40 m - 1/2 <em>g</em> <em>t</em>²

The ball is dropped from a 40 m height, so that it takes

0 = 40 m - 1/2 <em>g</em> <em>t</em>²

==>  <em>t</em> = √(80/<em>g</em>) s ≈ 2.86 s

for it to reach the ground, after which time it attains a velocity of

<em>v</em> = -<em>g</em> (√(80/<em>g</em>) s)

==>  <em>v</em> = -√(80<em>g</em>) m/s ≈ -28.0 m/s

During the next bounce, the ball's speed is halved, so its height is given by

<em>y</em> = (14 m/s) <em>t</em> - 1/2 <em>g</em> <em>t</em>²

Solve <em>y</em> = 0 for <em>t</em> to see how long it's airborne during this bounce:

0 = (14 m/s) <em>t</em> - 1/2 <em>g</em> <em>t</em>²

0 = <em>t</em> (14 m/s - 1/2 <em>g</em> <em>t</em>)

==>  <em>t</em> = 28/<em>g</em> s ≈ 2.86 s

So the ball completes 2 bounces within approximately 5.72 s, which means that after 5 s the ball has a height of

<em>y</em> = (14 m/s) (5 s - 2.86 s) - 1/2 <em>g</em> (5 s - 2.86 s)²

==>  (i) <em>y</em> ≈ 7.5 m

(ii) The ball will technically keep bouncing forever, since the speed of the ball is only getting halved each time it bounces. But <em>y</em> will converge to 0 as <em>t</em> gets arbitrarily larger. We can't realistically answer this question without being given some threshold for deciding when the ball is perfectly still.

During the first bounce, the ball starts with velocity 14 m/s, so the second bounce begins with 7 m/s, and the third with 3.5 m/s. The ball's height during this bounce is

<em>y</em> = (3.5 m/s) <em>t</em> - 1/2 <em>g</em> <em>t</em>²

Solve <em>y</em> = 0 for <em>t</em> :

0 = (3.5 m/s) <em>t</em> - 1/2 <em>g t</em>²

0 = <em>t</em> (3.5 m/s - 1/2 <em>g</em> <em>t</em>)

==>  (iii) <em>t</em> = 7/<em>g</em> m/s ≈ 0.714 s

As we showed earlier, the ball is in the air for 2.86 s before hitting the ground for the first time, then in the air for another 2.86 s (total 5.72 s) before bouncing a second time. At the point, the ball starts with an initial velocity of 7 m/s, so its velocity at time <em>t</em> after 5.72 s (but before reaching the ground again) would be

<em>v</em> = 7 m/s - <em>g t</em>

At 6 s, the ball has velocity

(iv) <em>v</em> = 7 m/s - <em>g</em> (6 s - 5.72 s) ≈ 4.26 m/s

You might be interested in
Perfect square of 11650​
suter [353]

Answer:

Since the area of the perfect square is 11650, and all of a squares sides ar equal, we just need to find the square root.

The square root of 11650 is 107.935166.

One side of the square is 107.935166

107.935166 x 107.935166 = 11650

(っ◔◡◔)っ ♥ Hope It Helps ♥

7 0
3 years ago
Read 2 more answers
An airplane is flying 340 km/hr at 12o east of north. the wind is blowing 40 km/hr at 34o south of east. what is the plane's act
seropon [69]
Define an x-y coordinate system such that
The positive x-axis = the eastern direction, with unit vector  \hat{i}.
The positive y-axis = the northern direction, with unit vector \hat{j}.

The airplane flies at 340 km/h at 12° east of north. Its velocity vector is
\vec{v}_{1} = 340(sin(15^{o})\hat{i} + cos(15^{o})\hat{j} ) = 88\hat{i} + 328.4\hat{j}

The wind blows at 40 km/h in the direction 34° south of east. Its velocity vector is
\vec{v}_{2} =40(cos(34^{o})\hat{i} - sin(24^{o})]\hat{j}) = 33.1615\hat{i} -22.3677\hat{j})

The plane's actual velocity is the vector sum of the two velocities. It is
\vec{v}=\vec{v}_{1}+\vec{v}_{2} = 121.1615\hat{i}+306.0473\hat{j}

The magnitude of the actual velocity is
v = √(121.1615² + 306.0473²) = 329.158 km/h

The angle that the velocity makes north of east is
tan⁻¹ (306.04733/121.1615) = 21.6°

Answer:
The actual velocity is 329.2 km/h at 21.6° north of east.
8 0
3 years ago
Explain why the duster accelerates different rates when different surfaces are in contact with the track
vichka [17]

Answer:

Because on different surfaces there's more/less friction. Smooth surfaces will allow the duster to accelerate while rough surfaces will decrease the acceleration.

8 0
3 years ago
Read 2 more answers
A professional golfer walks at an at an average rate of 4.20 meters per second on the golf course. The amount of time required f
Alja [10]

Answer:

T try d add b CD c

Explanation:

Cdgffd

5 0
3 years ago
Exercise b) 1) Fill in the blanks with the appropriate word: a) The pressure exerted by the air in atmosphere is called b) Press
Tanzania [10]

Answer:

atmospheric pressure

b)

c)increases

d) ....

7 0
3 years ago
Other questions:
  • Higher-amplitude waves carry more energy. Which of the following sounds would carry the MOST energy?
    14·2 answers
  • A solid conducting sphere carrying charge q has radius a. It is inside a concentric hollow conducting sphere with inner radius b
    5·1 answer
  • How should parents raise their intersex children: as girls, boys or intersex?
    13·2 answers
  • PLEASE HELP!!
    5·1 answer
  • What is proposed as evidence that supports the Big Bang Theory?
    15·2 answers
  • Froghopper insects have a typical mass of around 12.5 mg and can jump to a height of 42.3 cm. The takeoff velocity is achieved a
    13·1 answer
  • A helicopter is ascending vertically. a passenger accidentally drops her wallet out the sides of the helicopter when it is 160 m
    13·1 answer
  • WILL MARK BRAINLIEST!<br> WORTH A LOT OF POINTS!
    9·2 answers
  • A nerve impulse travels along a myelinated neuron at 90.1 m/s.<br> What is this speed in mi/h?
    12·1 answer
  • Determine the speed of sound on a cold winter day (Temperature = 3ºC). *
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!