Answer:
1. A. True
2. A. True
3. B. False
4. A. True
5. B. False
Explanation:
1. The particles are in constant motion. The collisions of the particles with the walls of the container are the cause of the pressure exerted by the gas. A. True. The pressure of an ideal gas is higher than the one that would exert a real gas.
2. The particles are assumed to exert no forces on each other; they are assumed neither to attract nor to repel each other. A. True. The intermolecular forces are negligible.
3. The particles are so small compared with the distances between them that the volume of the individual particles can be assumed to be about 1 mL. B. False. The volume of the gas particles is negligible.
4. The molecules in a real gas have finite volumes and do exert forces on each other, thus real gases do not conform to some of the assumptions of an ideal gas as stated by the kinetic molecular theory. A. True. We cannot apply ideal gas laws to real gases.
5. The average kinetic energy of a collection of gas particles is assumed to be inversely proportional to the Kelvin temperature of the gas. B. False. The average kinetic energy of a collection of gas particles is assumed to be directly proportional to the Kelvin temperature of the gas.
0.555 = 1.90/V
⇒ V = 1.90/0.555
⇒ V = 3.423 liter
Answer:
92 is that atomic number and 238.03 is the atomic mass number
Explanation:
The structure of the atom is given as:
⁹²₂₃₈.₀₃U
The number 92 is the atomic number of the atom.
The atomic number is the number of protons within an atom. This number defines the nature and type of atom that we have.
238.03 is the atomic mass number;
The is the number of protons and neutrons within an atom. It is typically the mass of nucleus.
Answer:
A. Because they are compounds, they cannot be pure substances.
Explanation:
The false statement from the given choices is that because they are compounds they cannot be pure substances. In fact, because they are compounds they are pure substances.
Pure substances are made up of elements and compounds and they have the following properties:
- All parts are the same throughout
- Composition is definite
- They cannot easily be separated or broken
- Separation by physical method is not easy
- They have unique sets of physical and chemical properties.