Answer:
The density of the liquid is 1.153 grams/ml.
Explanation:
You have to use the fomula of density
density = mass/volume ⇒ density = 376 grams/321 ml ⇒
density = 1.153 grams/ml.
Density = mass / volume
Since the answer must be in g/ml
Convert volume to ml
0.1266 x 1000 = 126.6 ml
15.196 / 126.6
= 0.126 g/ml
1-Electric Energy
Example: A lightbulb is an example of electric energy
2-Sound Energy
Example: When a dog barks, that is sound energy
3-Solar Energy
Example: When we use the sun for energy. Like using it to dry our clothes.
4-Chemical Energy
Example: An example is a battery. That may not seem like it, but it is Chemical Energy.
5-Nuclear Energy
Example: A fission reaction at a nuclear powerplant
6-Thermal Energy
Example: A pot of water boiling on an Electric Stove
~Silver
The question is incomplete, the complete question is;
The Lewis representation above depicts a reaction between hydrogen (blue) and a main-group element from group______ (red).
In this representation, each Y atom needs ______ electron(s) to complete its octet, and gains these electrons by forming______ bond(s) with atoms of H .
There are ______ unshared electron pair(s) and _______bonding electron pair(s) in the product molecule.
The bonds in the product are _________ (Ionic or Covalent)
Answer:
1) 16
2) 2 electrons
3) 2 bonds
4) 2 unshared pairs of electrons
5) 2 bonding pairs of electrons
6) The bonds in the product are covalent
Explanation:
Group sixteen elements have six electrons on their outermost shell. These include two unshared pairs of electrons and two unpaired electrons. These two unpaired electrons can now be covalently bonded to two hydrogen atoms to give H2Y. The compound H2Y has two lone pairs and two bond pairs of electrons.
H2Y can be a general formula for all hydrides of group 16. They are all very similar in structure but gradually differ in physical and chemical properties according to the graduated variation observed down the group.
Answer:K subscript e q equals StartFraction StartBracket upper C upper O subscript 2 EndBracket StartBracket upper C a upper O EndBracket over StartBracket upper C a upper C upper O subscript 3 EndBracket EndFraction
Explanation: the answer has it's root in Law of mass action which states that; the rate of a chemical reaction is directly proportional to the product of the concentrations of the reactants raised to their respective stoichiometric coefficients.