Branch of science that studies matter and its motion through space and time, along with related concepts such as energy and force. Describing the nature, measuring and quantifying of bodies and their motion, and dynamics.
The correct answer for this is A. <span>Accompany her to talk with your parents or another trusted adult to ask for help
when a friend is under the problems of addiction, it's always best to get help from a trusted adult.</span>
Answer:
B = 0.8 T
Explanation:
It is given that,
Radius of circular loop, r = 0.75 m
Current in the loop, I = 3 A
The loop may be rotated about an axis that passes through the center and lies in the plane of the loop.
When the orientation of the normal to the loop with respect to the direction of the magnetic field is 25°, the torque on the coil is 1.8 Nm.
We need to find the magnitude of the uniform magnetic field exerting this torque on the loop. Torque acting on the loop is given by :

B is magnetic field

So, the magnitude of the uniform magnetic field exerting this torque on the loop is 0.8 T.
According to the physical fact that a<span>mplitude and energy have proportional values, this statement is definitely FALSE. Pay attention on the words ''</span><span> inversely related'', that will be the main point which will make it absolutely clear. Hope you will find this answer helpful! Regards.</span>
The main formula to be used here is
Force = (mass) x (acceleration).
We'll get to work in just a second. But first, I must confess to you that I see
two things happening here, and I only know how to handle one of them. So
my answer will be incomplete, but I believe it will be more reliable than the
first answer that was previously offered here.
On the <u>right</u> side ... where the 2 kg and the 3 kg are hanging over the same
pulley, those weights are not balanced, so the 3 kg will pull the 2kg down, with
some acceleration. I don't know what to do with that, because . . .
At the <em>same time</em>, both of those will be pulled <u>up</u> by the 10 kg on the other side
of the upper pulley.
I think I can handle the 10 kg, and work out the acceleration that IT has.
Let's look at only the forces on the 10 kg:
-- The force of gravity is pulling it down, with the whatever the weight of 10 kg is.
-- At the same time, the rope is pulling it UP, with whatever the weight of 5 kg is ...
that's the weight of the two smaller blocks on the other end of the rope.
So, the net force on the 10 kg is the weight of (10 - 5) = 5 kg, downward.
The weight of 5 kg is (mass) x (gravity) = (5 x 9.8) = 49 newtons.
The acceleration of 10 kg, with 49 newtons of force on it, is
Acceleration = (force) / (mass) = 49/10 = <em>4.9 meters per second²</em>