Answer:
10.52 m
Explanation:
The power radiated by a body is given by
P = σεAT⁴ where ε = emissivity = 0.97, T = temperature = 30 C + 273 = 303 K, A = surface area of human body = 1.8 m², σ = 5.67 × 10⁻⁴ W/m²K⁴
P = σεAT⁴ = 5.67 × 10⁻⁸ W/m²K⁴ × 0.97 × 1.8 m² × (303)⁴ = 834.45 W
This is the power radiated by the human body.
The intensity I = P/A where A = 4πr² where r = distance from human body.
I = P/4πr²
r = (√P/πI)/2
If the python is able to detect an intensity of 0.60 W/m², with a power of 834.45 W emitted by the human body, the maximum distance r, is thus
r = (√P/πI)/2 = (√834.45/0.60π)/2 = 21.04/2 = 10.52 m
So, the maximum distance at which a python could detect your presence is 10.52 m.
Complete Question
Q. Two go-carts, A and B, race each other around a 1.0km track. Go-cart A travels at a constant speed of 20m/s. Go-cart B accelerates uniformly from rest at a rate of 0.333m/s^2. Which go-cart wins the race and by how much time?
Answer:
Go-cart A is faster
Explanation:
From the question we are told that
The length of the track is 
The speed of A is 
The uniform acceleration of B is 
Generally the time taken by go-cart A is mathematically represented as
=> 
=> 
Generally from kinematic equation we can evaluate the time taken by go-cart B as

given that go-cart B starts from rest u = 0 m/s
So

=>
=>
Comparing
we see that
is smaller so go-cart A is faster
Answer:
In general, a scientific law is the description of an observed phenomenon. It doesn't explain why the phenomenon exists or what causes it. The explanation of a phenomenon is called a scientific theory.
Explanation:
Because an object in rest stays in rest until an unequal force pushes it so gravity is pushing on the egg making it drop
Gravity affects weight of an object
Its weight reduces as it moves away from the center as gravity is strongest near the core and reduces as you move away
Hope this helps C: