In contrast to an inhibitory transmitter, an excitatory transmitter encourages the development of an electrical signal known as an action potential in the receiving neuron.
Depolarization is brought on by excitatory neurotransmitters (decrease in membrane potential). Hyperpolarization is brought on by inhibitory neurotransmitters (increase in membrane potential).
Neurotransmitters fall into two categories: excitatory and inhibitory. While inhibitory neurotransmitters work to stop an action potential, excitatory neurotransmitters function to activate receptors on the postsynaptic membrane and enhance the effects of the action potential.
While inhibitory neurons release neurotransmitters that prevent action potential firing, excitatory neurons release neurotransmitters that cause an action potential to occur in the postsynaptic neuron.
Let's know more about Excitatory & Inhibitory
brainly.com/question/13021637
Sulfur and chlorine. Explanation: A covalent bond is formed by two non-metals with similar electronegativities. As a consequence, they share one or more pairs of electrons between their nuclei
1, When temperature is increased the volume will also increase. this is because the particles will gain kinetic energy and bombard the walls of the container of the gas at a higher frequency, therefore, for the pressure to remain constant as per Charles' law, the volume will have to increase so that the rate of bombardment remains constant. This is explained by the Charles law which states that the volume of a gas is directly proportional to the absolute temperature provided pressure remains constant.
2. When temperature is Decreased the volume will also Decrease. this is because the particles will loose kinetic energy and bombard the walls of the container of the gas less frequently, therefore, for the pressure to remain constant as per Charles' law, the volume will have to reduce so that the rate of bombardment remains constant. This is explained by the Charles law which states that the volume of a gas is directly proportional to the absolute temperature provided pressure remains constant.
3. When temperature is increased the pressure will increase. This is because the gas particles gain kinetic energy and bombard the walls of the container more frequently. this is according to Pressure law which states that for a constant volume of a gas the pressure is directly proportional to absolute temperature
4. When temperature is decreased, pressure will decrease, This is because the gas particles lose kinetic energy and bombard the walls of the container less frequently. this is according to Pressure law which states that for a constant volume of a gas the pressure is directly proportional to absolute temperature
5. When particles are added, pressure will increase. This is because the bombardment per unit area also increases. Boyles law explains this, that at fixed temperature the volume of a gas is inversely proportional to the pressure.
6. When particles are removed, the pressure will decrease. This is because the bombardment per unit area also decreases. Boyle's law explains this, that at fixed temperature the volume of a gas is inversely proportional to the pressure.
Answer:
0.00000363618
could be wrong.
double check me someone or just trust me
(don't blame me if you get it wrong)