Answer:
pH = 12.33
Explanation:
Lets call HA = butanoic acid and A⁻ butanoic acid and its conjugate base butanoate respectively.
The titration reaction is
HA + KOH ---------------------------- A⁻ + H₂O + K⁺
number of moles of HA : 118.3 ml/1000ml/L x 0.3500 mol/L = 0.041 mol HA
number of moles of OH : 115.4 mL/1000ml/L x 0.400 mol/L = 0.046 mol A⁻
therefore the weak acid will be completely consumed and what we have is the unreacted strong base KOH which will drive the pH of the solution since the contribution of the conjugate base is negligible.
n unreacted KOH = 0.046 - 0.041 = 0.005 mol KOH
pOH = - log (KOH)
M KOH = 0.005 mol / (0.118.3 +0.1154)L = 0.0021 M
pOH = - log (0.0021) = 1.66
pH = 14 - 1.96 = 12.33
Note: It is a mistake to ask for the pH of the <u>acid solutio</u>n since as the above calculation shows we have a basic solution the moment all the acid has been consumed.
Answer:
Q = 114349.5 J
Explanation:
Hello there!
In this case, since this a problem in which we need to calculate the total heat of the described process, it turns out convenient to calculate it in three steps; the first one, associated to the heating of the liquid water from 40 °C to 100 °C, next the vaporization of liquid water to steam at constant 100 °C and finally the heating of steam from 100 °C to 115 °C. In such a way, we calculate each heat as shown below:

Thus, the total energy turns out to be:

Best regards!
For Nitrogen Atom:
Atomic Number - 7
Protons - 7
Neutrons - 8
Electrons - 7
Cation/Anion - Anion
For Nitrogen Ion:
Atomic Number - 7
Protons - 7
Neutrons - 8
Electrons - 10
Atomic Symbol - N3-
<span>1. the pressure of a gas over a solvent is increase
</span> Gas solubility decreases"<span>
2. the partial pressure of an anesthetic gas is increased
</span> " gas solubility does not change"<span>
3. air in blood a diver descends 10 M and pressure increases by 1 atm
</span> Gas solubility decreases"<span>
4. the temp is increase
</span>"gas solubility increases"<span>
5. O2 the temp of a body of water rises.
</span>"gas solubility increases"
Answer:
a. 3; b. 5; c. 10; d. 12
Explanation:
pH is defined as the negative log of the hydronium concentration:
pH = -log[H₃O⁺] (hydronium concentration)
For problems a. and b., HCl and HNO₃ are strong acids. This means that all of the HCl and HNO₃ would ionize, producing hydronium (H₃O⁺) and the conjugate bases Cl⁻ and NO₃⁻ respectively. Further, since all of the strong acid ionizes, 1 x 10⁻³ M H₃O⁺ would be produced for a., and 1.0 x 10⁻⁵ M H₃O⁺ for b. Plugging in your calculator -log[1 x 10⁻³] and -log[1.0 x 10⁻⁵] would equal 3 and 5, respectively.
For problems c. and d. we are given a strong base rather than acid. In this case, we can calculate the pOH:
pOH = -log[OH⁻] (hydroxide concentration)
Strong bases similarly ionize to completion, producing [OH⁻] in the process; 1 x 10⁻⁴ M OH⁻ will be produced for c., and 1.0 x 10⁻² M OH⁻ produced for d. Taking the negative log of the hydroxide concentrations would yield a pOH of 4 for c. and a pOH of 2 for d.
Finally, to find the pH of c. and d., we can take the pOH and subtract it from 14, giving us 10 for c. and 12 for d.
(Subtracting from 14 is assuming we are at 25°C; 14, the sum of pH and pOH, changes at different temperatures.)