I believe it's the second option. 2 or more elements joined together such that the elements have lost their individual identity in favour of a new set of properties.
Answer:
Because it has a quickly sedative effect and it has antimicrobial effect.
Explanation:
This gas is useful because is used to trait pain, reduce anxiety and promote relaxation, slow down the body reaction, so the dentist can use it to calm down the patients.
If the patient present some injuries, this gas can help in wound healing.
Answer:
Explanation:
Groundwater is stored in the open spaces within rocks and within unconsolidated sediments. Rocks and sediments near the surface are under less pressure than those at significant depth and therefore tend to have more open space. For this reason, and because it’s expensive to drill deep wells, most of the groundwater that is accessed by individual users is within the first 100 m of the surface. Some municipal, agricultural, and industrial groundwater users get their water from greater depth, but deeper groundwater tends to be of lower quality than shallow groundwater, so there is a limit as to how deep we can go.
You should take note that the question is about stability. A compound is stable if it does not easily react with other elements. Hence, its reactivity must be low. As you move down the group, reactivity decreases. So, the halide at the very bottom is the least reactive. It would then be logical that the most stable conjugate base is I⁻ and the least stable conjugate base is the most reactive which is F⁻.
Answer:
a) 2-bromopyrrole
Explanation:
Our options for this questions are:
a) 2-bromopyrrole
b) 2,3-dibromopyrrole
c) N-bromopyrrole
d) 3-bromopyrrole
To understand how the reaction works we have to start with the <u>resonance structures</u>. (Figure 1), on these structures, we will obtain a n<u>egative charge on carbon 2</u> in the pyrrole ring, therefore on this carbon we can generate an attack to an electrophile.
The second step is to check how the mechanism take place. An <u>electrophile is generated</u> by the
and
. This electrophile can be <u>attacked</u> by the negative charge on carbon 2 producing the 2-bromopyrrole. (See figure 2).
I hope it helps!