Answer:
Explanation:
Electric field E = 4 x 10⁷ V / m
Dielectric constant k = 24
capacitance of capacitor
C = kε₀ A / d
d = plate separation
A = plate area
C = .89 x 10⁻⁶
V / d = electric field
for minimum d , electric field will be maximum
V / d = 4 x 10⁷
1930 / d = 4 x 10⁷
d = 1930 / 4 x 10⁷
d = 482.5 x 10⁻⁷ m
= 48.25 x 10⁻⁶ m
C = kε₀ A / d
.89 x 10⁻⁶ = 24 ε₀ A / d
A = .89 x 10⁻⁶ X d / 24 ε₀
A = .89 x 10⁻⁶ X 48.25 x 10⁻⁶ / 24 x 8.85 x 10⁻¹²
= 42.9 / 212.4
= .2019 m²
If you know the distance and the time I travelled that distance.
You just have to divide the time from the distance to get velocity
V =d
_
t
<u>Answer:</u>
Prior to exercise, a proper warm-up of 10-15 minutes is extremely important to avoid injuries.
- Don't go too hard in the beginning and boost your activity level slowly. A good indication of a proper warm-up is that you feel sweat on your body parts.
- Don't overstretch right in the beginning as it can cause sore in your muscles and joints or stress fractures.
- Take a break if you feel sick or fatigues and use other drinks along with water to replace electrolytes and body fluids.
Answer:
8.9
Explanation:
We can start by calculating the initial elastic potential energy of the spring. This is given by:
(1)
where
k = 35.0 N/m is the initial spring constant
x = 0.375 m is the compression of the spring
Solving the equation,

Later, the professor told the student that he needs an elastic potential energy of
U' = 22.0 J
to achieve his goal. Assuming that the compression of the spring will remain the same, this means that we can calculate the new spring constant that is needed to achieve this energy, by solving eq.(1) for k:

Therefore, Tom needs to increase the spring constant by a factor:
