Answer:
The relation between frequency and time period is given by:
f = 1/T
Explanation:
In a wave motion, the particle move about the mean position with the passage of time. The particles rise to reach the highest point which is crest, and similarly falls to reach the lowest point which is trough. The cycle keeps on repeating.
The time period of the wave can be defined as the time taken to complete one such cycle. Time period is given by:
T = 2π/ω
Frequency can be defined as the number of cycles completed in unit time, which can be taken as the inverse of time period. frequency is given by
f = ω/2π
or
f = 1/T
Answer:
0.256 hours
Explanation:
<u>Vectors in the plane
</u>
We know Office A is walking at 5 mph directly south. Let
be its distance. In t hours he has walked

Office B is walking at 6 mph directly west. In t hours his distance is

Since both directions are 90 degrees apart, the distance between them is the hypotenuse of a triangle which sides are the distances of each office



This distance is known to be 2 miles, so


t is approximately 15 minutes
Answer:
h = 9.83 cm
Explanation:
Let's analyze this interesting exercise a bit, let's start by comparing the density of the ball with that of water
let's reduce the magnitudes to the SI system
r = 10 cm = 0.10 m
m = 10 g = 0.010 kg
A = 100 cm² = 0.01 m²
the definition of density is
ρ = m / V
the volume of a sphere
V =
V =
π 0.1³
V = 4.189 10⁻³ m³
let's calculate the density of the ball
ρ =
ρ = 2.387 kg / m³
the tabulated density of water is
ρ_water = 997 kg / m³
we can see that the density of the body is less than the density of water. Consequently the body floats in the water, therefore the water level that rises corresponds to the submerged part of the body. Let's write the equilibrium equation
B - W = 0
B = W
where B is the thrust that is given by Archimedes' principle
ρ_liquid g V_submerged = m g
V_submerged = m / ρ_liquid
we calculate
V _submerged = 0.10 9.8 / 997
V_submerged = 9.83 10⁻⁴ m³
The volume increassed of the water container
V = A h
h = V / A
let's calculate
h = 9.83 10⁻⁴ / 0.01
h = 0.0983 m
this is equal to h = 9.83 cm
Answer:
(a) T = 2987.6 k
(b) T = 19986.2 k
Explanation:
The temperature of a star in terms of peak wavelength can be given by Wein's Displacement Law, which is as follows:

where,
T = Radiated surface temperature
= peak wavelength
(a)
here,
= 970 nm = 9.7 x 10⁻⁷ m
Therefore,

<u>T = 2987.6 k</u>
(b)
here,
= 145 nm = 1.45 x 10⁻⁷ m
Therefore,

<u>T = 19986.2 k</u>
The answer is; The entropy of steam is larger than because it is more disordered than ice
Entropy is synonymous to the degree of disorder or randomness of molecules in a system. The molecules of steam are far apart from each other and move randomly in the system colliding with each other. Those of ice has less kinetic energy, vibrate more or less in a fixed position in the structiure, and are arranged in a orderd fashion