Answer:
Average speed of Elain = 60 km/h
Explanation:
Total Distance covered by Jack = 360km
Average Speed of Jack = 80 km/h
Time taken by Jack to complete his journey = Distance / Average speed = 360 km / 80 km/h
Time taken by Jack to complete his journey = 4.5 hours
As it is given the both Jack and Elain travelled the same amount of distance:
Total distance travelled by Elain = 360 km
It is given that Elain took 1.5 hourse more than Jack to cover the distance, so Time taken by Elain to cover the distance is = 4.5 hours + 1.5 hours = 6 hours
Average speed of Elain = Distance/ time = 360 km / 6 hours
Average speed of Elain = 60 km/h
Rhythms that occur faster and slower than the beat are b.<span>not synchronized with the time signature. The synchronization follows the same beat or rhythm. If the time signature say is lower than the original, then the rhythm should be faster. Otherwise, the rhythm is slower than the original one.</span>
On a similar problem wherein instead of 480 g, a 650 gram of bar is used:
Angular momentum L = Iω, where
<span>I = the moment of inertia about the axis of rotation, which for a long thin uniform rod rotating about its center as depicted in the diagram would be 1/12mℓ², where m is the mass of the rod and ℓ is its length. The mass of this particular rod is not given but the length of 2 meters is. The moment of inertia is therefore </span>
<span>I = 1/12m*2² = 1/3m kg*m² </span>
<span>The angular momentum ω = 2πf, where f is the frequency of rotation. If the angular momentum is to be in SI units, this frequency must be in revolutions per second. 120 rpm is 2 rev/s, so </span>
<span>ω = 2π * 2 rev/s = 4π s^(-1) </span>
<span>The angular momentum would therefore be </span>
<span>L = Iω </span>
<span>= 1/3m * 4π </span>
<span>= 4/3πm kg*m²/s, where m is the rod's mass in kg. </span>
<span>The direction of the angular momentum vector - pseudovector, actually - would be straight out of the diagram toward the viewer. </span>
<span>Edit: 650 g = 0.650 kg, so </span>
<span>L = 4/3π(0.650) kg*m²/s </span>
<span>≈ 2.72 kg*m²/s</span>
The best and most correct answer among the choices provided by the question is <span>a.The Three Laws of Planetary Motion, Principia Astronomica. </span>
Hope my answer would be a great help for you.
If you have more questions feel free to ask here at Brainly.