1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DaniilM [7]
2 years ago
5

A piano wire with mass 2.95 g and length 79.0 cm is stretched with a tension of 29.0 N . A wave with frequency 105 Hz and amplit

ude 1.80 mm travels along the wire.
(a) Calculate the average power carried by the wave.
(b) What happens to the average power if the wave amplitude is halved?
Physics
1 answer:
Romashka-Z-Leto [24]2 years ago
8 0

The concept needed to solve this problem is average power dissipated by a wave on a string. This expression ca be defined as

P = \frac{1}{2} \mu \omega^2 A^2 v

Here,

\mu = Linear mass density of the string

\omega =  Angular frequency of the wave on the string

A = Amplitude of the wave

v = Speed of the wave

At the same time each of this terms have its own definition, i.e,

v = \sqrt{\frac{T}{\mu}} \rightarrow Here T is the Period

For the linear mass density we have that

\mu = \frac{m}{l}

And the angular frequency can be written as

\omega = 2\pi f

Replacing this terms and the first equation we have that

P = \frac{1}{2} (\frac{m}{l})(2\pi f)^2 A^2(\sqrt{\frac{T}{\mu}})

P = \frac{1}{2} (\frac{m}{l})(2\pi f)^2 A^2 (\sqrt{\frac{T}{m/l}})

P = 2\pi^2 f^2A^2(\sqrt{T(m/l)})

PART A ) Replacing our values here we have that

P = 2\pi^2 (105)^2(1.8*10^{-3})^2(\sqrt{(29.0)(2.95*10^{-3}/0.79)})

P = 0.2320W

PART B) The new amplitude A' that is half ot the wavelength of the wave is

A' = \frac{1.8*10^{-3}}{2}

A' = 0.9*10^{-3}

Replacing at the equation of power we have that

P = 2\pi^2 (105)^2(0.9*10^{-3})^2(\sqrt{(29.0)(2.95*10^{-3}/0.79)})

P = 0.058W

You might be interested in
Which qualifications are typical for a Manufacturing career? Check all that apply.
kicyunya [14]
D should be the answer
8 0
3 years ago
An athlete at the gym holds a 3.0 kg steel ball in his hand. His arm is 60 cm long and has a mass of 3.8 kg, with the center of
Serggg [28]

Answer:

(a) τ = 26.58 Nm

(b) τ = 18.79 Nm

Explanation:

(a)

First we find the torque due to the ball in hand:

τ₁ = F₁d₁

where,

τ₁ = Torque due to ball in hand = ?

F₁ = Force due to ball in hand = m₁g = (3 kg)(9.8 m/s²) = 29.4 N

d₁ = perpendicular distance between ball and shoulder = 60 cm = 0.6 m

τ₁ = (29.4 N)(0.6 m)

τ₁ = 17.64 Nm

Now, we calculate the torque due to the his arm:

τ₁ = F₁d₁

where,

τ₂ = Torque due to arm = ?

F₂ = Force due to arm = m₂g = (3.8 kg)(9.8 m/s²) = 37.24 N

d₂ = perpendicular distance between center of mass and shoulder = 40% of 60 cm = (0.4)(60 cm) = 24 cm = 0.24 m

τ₂ = (37.24 N)(0.24 m)

τ₂ = 8.94 Nm

Since, both torques have same direction. Therefore, total torque will be:

τ = τ₁ + τ₂

τ = 17.64 Nm + 8.94 Nm

<u>τ = 26.58 Nm</u>

<u></u>

(b)

Now, the arm is at 45° below horizontal line.

First we find the torque due to the ball in hand:

τ₁ = F₁d₁

where,

τ₁ = Torque due to ball in hand = ?

F₁ = Force due to ball in hand = m₁g = (3 kg)(9.8 m/s²) = 29.4 N

42.42 cm = 0.4242 m

τ₁ = (29.4 N)(0.4242 m)

τ₁ = 12.47 Nm

Now, we calculate the torque due to the his arm:

τ₁ = F₁d₁

where,

τ₂ = Torque due to arm = ?

F₂ = Force due to arm = m₂g = (3.8 kg)(9.8 m/s²) = 37.24 N

d₂ = perpendicular distance between center of mass and shoulder = 40% of (60 cm)(Cos 45°) = (0.4)(42.42 cm) = 16.96 cm = 0.1696 m

τ₂ = (37.24 N)(0.1696 m)

τ₂ = 6.32 Nm

Since, both torques have same direction. Therefore, total torque will be:

τ = τ₁ + τ₂

τ = 12.47 Nm + 6.32 Nm

<u>τ = 18.79 Nm</u>

3 0
2 years ago
During its swing, a pendulum on a clock has the kinetic energy of 6J and the potential energy of 5J. What formula will you use t
svlad2 [7]

Answer:

Potential energy is converted to kinetic energy, which is the energy exerted by a moving object. An active pendulum has the most kinetic energy at the lowest point of its swing when the weight is moving fastest.

Explanation:

6 0
3 years ago
1. What function does the skull serve for the skeleton?
Free_Kalibri [48]
1.c
2.b
3.a
4.c
5.b
I hop this helps
8 0
3 years ago
A bodybuilder deadlifts a 215 kg weight to a height of 0.90 m above the ground. If he deadlifts this weight 10 times in a span o
wariber [46]

A bodybuilder deadlifts 215 kg to a height of 0.90 m. If he deadlifts this weight 10 times in 45 s, the power exerted is 421 W (b.)

<h3>What is power?</h3>

In physics, power (P) is the work (W) done over a period of time.

  • Step 1. Calculate the work done by the bodybuilder each time.

The bodybuilder lifts a 215 kg (m) weight to a height of 0.90 m (h). Being the gravity (g) of 9.81 m/s², we can calculate the work done in each lift using the following expression.

W = m × g × h = 215 kg × 9.81 m/s² × 0.90 m = 1.9 × 10³ N

  • Step 2. Calculate the work done by the bodybuilder over 10 times.

W = 10 × 1.9 × 10³ N = 1.9 × 10⁴ N

  • Step 3. Calculate the power exerted by the bodybuilder.

The bodybuilder does a work of 1.9 × 10⁴ N in a 45-s span.

P = 1.9 × 10⁴ N/45 s = 421 W

A bodybuilder deadlifts 215 kg to a height of 0.90 m. If he deadlifts this weight 10 times in 45 s, the power exerted is 421 W (b.)

Learn more about power here: brainly.com/question/911620

#SPJ1

4 0
1 year ago
Other questions:
  • Could anyone help me out ?
    13·2 answers
  • Suppose a NASCAR race car rounds one end of the Martinsville Speedway. This end of the track is a turn with a radius of approxim
    11·1 answer
  • A group of 25 particles have the following speeds:
    11·1 answer
  • A(n)... is a material that takes in a wave when the wave hits it
    8·1 answer
  • A plastic circular loop has radius R, and a positive charge q is distributed uniformly around the circumference of the loop. The
    8·1 answer
  • Would an astronauts mass change as she traveled from planet to planet? Explain.
    15·1 answer
  • A single mass m1 = 3.6 kg hangs from a spring in a motionless elevator. The spring is extended x = 15.0 cm from its unstretched
    15·1 answer
  • 7.
    10·2 answers
  • Please Hurry!! This is very simple!
    9·1 answer
  • Which is the wavelength of a wave that travels at a speed of 3.0 × 10^8 m/s and has a frequency of 1.5 × 10^16 Hz?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!