Answer:
163.33 Watts
Explanation:
From the question given above, the following data were obtained:
Mass (m) = 40 Kg
Height (h) = 25 m
Time (t) = 1 min
Power (P) =..?
Next, we shall determine the energy. This can be obtained as follow:
Mass (m) = 40 Kg
Height (h) = 25 m
Acceleration due to gravity (g) = 9.8 m/s²
Energy (E) =?
E = mgh
E = 40 × 9.8 × 255
E = 9800 J
Finally, we shall determine the power. This can be obtained as illustrated below:
Time (t) = 1 min = 60 s
Energy (E) = 9800 J
Power (P) =?
P = E/t
P = 9800 / 60
P = 163.33 Watts
Thus, the power required is 163.33 Watts
Answer: Increasing the frequency does not increase the wavelength. They are inversely related.
Explanation:
As wavelength increases, frequency decreases. If you look at a transverse wave and it has a long wavelength, there only a few waves produce. Which means there is less frequency produced. So as wavelength increases, frequency decreases. The other way around can work to. As frequency increases, wavelength decreases. They are inversely related.
P=change in E/t
Change in E=p*t
=15*3
=45
The answer is 45J.
Answer:
4.635 *10^12 Neutrinos
Explanation:
Here in this question, we are to determine the number of neutrinos in billions produced, given the power generated by the proton-proton cycle.
We proceed as follows;
In proton-proton cycle generates 26.7 MeV of energy and in this cycle two neutrinos are produced.
From the question, we are given that
Power P = 9.9 watts = 9.9 J/s
Watts is same as J/s
The number of proton-proton cycles required to generate E energy is N = E / E '
Where E ' = Energy generated in proton-proton cycle which is given as 26.7 Mev in the question
Converting Mev to J, we have
= 26.7 x1.6 x10 -13 J
To get the number N which is the number of proton-proton cycle required, we have;
N = 9.9 /(26.7 x1.6 x10^-13) = 2.32 * 10^12
Since we have two proton cycles( proton-proton), it automatically means 2 neutrinos will be produced.
Therefore number of neutrions produced = 2 x Number of proton-proton cycles = 2 * 2.32 * 10^12 = 4.635 * 10^12 neutrinos