Answer:
No, the expression is not linear because the highest power of x is 2.
Answer with explanation:
1. The given equations are
3x -5 y=2
-x+2 y= 0
⇒The matrix in the form of , AX=B, is
![A=\left[\begin{array}{cc}3&-5\\-1&2\end{array}\right] ,\\\\ X=\left[\begin{array}{c}x&y\end{array}\right],\\\\B=\left[\begin{array}{c}2&0\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%26-5%5C%5C-1%262%5Cend%7Barray%7D%5Cright%5D%20%2C%5C%5C%5C%5C%20X%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%2C%5C%5C%5C%5CB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%260%5Cend%7Barray%7D%5Cright%5D)

Adj.A=Transpose of cofactor of Matrix A
![Adj.A=\left[\begin{array}{cc}2&1\\5&3\end{array}\right] ,\\\\ |A|=6-5\\\\|A|=1\\\\\left[\begin{array}{c}x&y\end{array}\right]=\left[\begin{array}{cc}2&5\\1&3\end{array}\right] \times \left[\begin{array}{c}2&0\end{array}\right]\\\\x=4, y=2](https://tex.z-dn.net/?f=Adj.A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%261%5C%5C5%263%5Cend%7Barray%7D%5Cright%5D%20%2C%5C%5C%5C%5C%20%7CA%7C%3D6-5%5C%5C%5C%5C%7CA%7C%3D1%5C%5C%5C%5C%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%265%5C%5C1%263%5Cend%7Barray%7D%5Cright%5D%20%5Ctimes%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%260%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5Cx%3D4%2C%20y%3D2)
2.
The given equations are
x+y-z=2
x+z=7
2 x +y+z=13
⇒The matrix in the form of , AX=B, is
![A=\left[\begin{array}{ccc}1&1&-1\\1&0&1\\2&1&1\end{array}\right]\\\\ X=\left[\begin{array}{ccc}x\\y\\z\end{array}\right]\\\\B= \left[\begin{array}{ccc}2\\7\\13\end{array}\right]\\\\\rightarrow X=A^{-1}B\\\\\rightarrow X=\frac{Adj.A}{|A|}\times B\\\\a_{11}=-1,a_{12}=1,a_{13}=1,a_{21}=-2,a_{22}=3,a_{23}=1,a_{31}=1,a_{32}=-2,a_{33}=-1\\\\|A|=1\times(0-1)-1\times(1-2)-1\times(1-0)\\\\=-1+1-1\\\\|A|=-1\\\\Adj.A=\left[\begin{array}{ccc}-1&-2&1\\1&3&-2\\1&1&-1\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%26-1%5C%5C1%260%261%5C%5C2%261%261%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%20X%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5CB%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%5C%5C7%5C%5C13%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%5Crightarrow%20X%3DA%5E%7B-1%7DB%5C%5C%5C%5C%5Crightarrow%20X%3D%5Cfrac%7BAdj.A%7D%7B%7CA%7C%7D%5Ctimes%20B%5C%5C%5C%5Ca_%7B11%7D%3D-1%2Ca_%7B12%7D%3D1%2Ca_%7B13%7D%3D1%2Ca_%7B21%7D%3D-2%2Ca_%7B22%7D%3D3%2Ca_%7B23%7D%3D1%2Ca_%7B31%7D%3D1%2Ca_%7B32%7D%3D-2%2Ca_%7B33%7D%3D-1%5C%5C%5C%5C%7CA%7C%3D1%5Ctimes%280-1%29-1%5Ctimes%281-2%29-1%5Ctimes%281-0%29%5C%5C%5C%5C%3D-1%2B1-1%5C%5C%5C%5C%7CA%7C%3D-1%5C%5C%5C%5CAdj.A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-1%26-2%261%5C%5C1%263%26-2%5C%5C1%261%26-1%5Cend%7Barray%7D%5Cright%5D)
![\frac{Adj.A}{|A|}=\left[\begin{array}{ccc}1&2&-1\\-1&-3&2\\-1&-1&1\end{array}\right]\\\\X=A^{-1}B\\\\\left[\begin{array}{ccc}x\\y\\z\end{array}\right]=\left[\begin{array}{ccc}1&2&-1\\-1&-3&2\\-1&-1&1\end{array}\right]\times\left[\begin{array}{ccc}2\\7\\13\end{array}\right]\\\\x=3,y=3,z=4](https://tex.z-dn.net/?f=%5Cfrac%7BAdj.A%7D%7B%7CA%7C%7D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%26-1%5C%5C-1%26-3%262%5C%5C-1%26-1%261%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5CX%3DA%5E%7B-1%7DB%5C%5C%5C%5C%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%26-1%5C%5C-1%26-3%262%5C%5C-1%26-1%261%5Cend%7Barray%7D%5Cright%5D%5Ctimes%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%5C%5C7%5C%5C13%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5Cx%3D3%2Cy%3D3%2Cz%3D4)
Answer:
A. 6y
Step-by-step explanation:
The profit formula is: total earnings- total expenses. In this case the 145 has a minus sign, which indicates that these are Debra's total expenses. Then, 6y represents total revenue. You can also identify that this is the answer because revenues depend on babysitting hours, which in this case, is represented by the variable "y".
I think the statement given above is false. The variable used to predict changes in the values of another value is not called the response variable. The variable used to predict another variable is called the independent, <span>predictor or </span><span>explanatory variable. Hope this answers the question.</span>
Answer:
D
Step-by-step explanation:
hope this helps