Step-by-step explanation:
f(x)=2x²+3x+9
g(x) = - 3x + 10
In order to find (f⋅g)(1) first find (f⋅g)(x)
To find (f⋅g)(x) substitute g(x) into f(x) , that's for every x in f (x) replace it by g (x)
We have
(f⋅g)(x) = 2( - 3x + 10)² + 3(- 3x + 10) + 9
Expand
(f⋅g)(x) = 2( 9x² - 60x + 100) - 9x + 30 + 9
= 18x² - 120x + 200 - 9x + 30 + 9
Group like terms
(f⋅g)(x) = 18x² - 120x - 9x + 200 + 30 + 9
(f⋅g)(x) = 18x² - 129x + 239
To find (f⋅g)(1) substitute 1 into (f⋅g)(x)
That's
(f⋅g)(1) = 18(1)² - 129(1) + 239
= 18 - 129 + 239
We have the final answer as
<h3>(f⋅g)(1) = 128</h3>
Hope this helps you
Answer:
109
Step-by-step explanation:
Hope this helped :)
Answer:a) P(8 of the players numbers are drawn)=1.3×10^-8
b) P(7 of the players number are drrawn)=3.33×10^-c) P(at least 6 of the players number were drawn)=1.84×10^-4
Step-by-step explanation:
Players has 8 combinations of numbers from 1-40. The outcome S contains all the combinations of 8 out of 40
a) P(8 of the players numbers are drawn)= 1/40/8= 1.3×10^-8
There are one in hundred million chances that the draw numbers are precisely the chosen ones.
b) Number of ways of drawing 78 selected numbers from 1-40=8×(40-7)
8×32
P(7 of the players number are drawn)=8×32/40 =3.33×10^-6.
There are approximately 300,000 chances that 7 of the players numbers are chosen
c) P(at least 6 players numbers are drawn)= 32/2×(8/6) ways to draw.
P(at least 6 players numbers are drawn)=P(all 8 chosen are drawn)+P(7 players numbers drawn)+P(6 chosen are drawn) = 1+ 8 x32/40/8 +[8\6 ×32/2]
P(at least 6 players numbers are drawn) = 1.84×10^-4.
There are approximately 5400chances that at least6 of the numbers drawn are chosen by the player.
Answer:
(2/12 & 9/12)
Step-by-step explanation:
12 is the least common denominator for the fractions, so they must be rewritten to have the same denominator, but hold the same value.
( not written by me )