Answer:
Mass released = 8.6 g
Explanation:
Given data:
Initial number of moles nitrogen= 0.950 mol
Initial volume = 25.5 L
Final mass of nitrogen released = ?
Final volume = 17.3 L
Solution:
Formula:
V₁/n₁ = V₂/n₂
25.5 L / 0.950 mol = 17.3 L/n₂
n₂ = 17.3 L× 0.950 mol/25.5 L
n₂ = 16.435 L.mol /25.5 L
n₂ = 0.644 mol
Initial mass of nitrogen:
Mass = number of moles × molar mass
Mass = 0.950 mol × 28 g/mol
Mass = 26.6 g
Final mass of nitrogen:
Mass = number of moles × molar mass
Mass = 0.644 mol × 28 g/mol
Mass = 18.0 g
Mass released = initial mass - final mass
Mass released = 26.6 g - 18.0 g
Mass released = 8.6 g
Compound is formed when two or more atomic bond (or atom)
Answer:
61.3 g/mol
Step-by-step explanation:
We can use the <em>Ideal Gas Law</em> to solve this problem:
pV = nRT
Since n = m/M, the equation becomes
pV = (m/M)RT Multiply each side by M
pVM = RT Divide each side by RT
M = (mRT)/(pV)
<em>Data:
</em>
m = 0.675 g
R = 0.0.083 14 bar·L·K⁻¹mol⁻¹
T = 0 °C = 273.15 K
p = 1 bar
V = 250 mL = 0.250 L
<em>Calculation:
</em>
M= (0.675 × 0.083 14 × 273.15)/(1 × 0.250)
M= 15.33/0.250
M= 61.3 g/mol
Answer: Wavelength of light emitted when the electron in doubly ionized lithium makes a transition from E12 to E8 is
Explanation:


Using Rydberg's Equation for hydrogen and hydrogen like atom:
Where,
= Wavelength of radiation
= Rydberg's Constant
= Higher energy level
= Lower energy level
We have:
The wavelength of the photon emitted when the hydrogen atom undergoes a transition is