In the preparatory phase of glycolysis, two molecules of ATP are invested and the hexose chain is cleaved into two triose phosphates. During this, the phosphorylation of glucose and its conversion to glyceraldehyde-3-phosphate take place. During this phase, the conversion of glyceraldehyde-3-phosphate to pyruvate and the coupled formation of ATP take place. Because Glucose is split to yield two molecules of D-Glyceraldehyde-3-phosphate, each step in the payoff phase occurs twice per molecule of glucose.
Glyceraldehyde 3-phosphate dehydrogenase Simultaneous oxidation and phosphorylation of G3P produce 1,3-bisphosphoglycerate (1,3-BPG) and nicotine adenine dinucleotide (NADH).
The divalent cation also affected the response of the enzyme from the endosperm and shoots to adenine nucleotides and inorganic pyrophosphate.
This phase is also called the glucose activation phase. In the preparatory phase of glycolysis, two molecules of ATP are invested and the hexose chain is cleaved into two triose phosphates. During this, the phosphorylation of glucose and its conversion to glyceraldehyde-3-phosphate take place. Steps 1, 2, 3, 4, and 5 together are called the preparatory phase.
For more information on phosphorylation click on the link below:
brainly.com/question/7465103
#SPJ4
Answer:
The potential energy of both toy vehicles (purple and pink) decreased. Since the pink toy was moved closer to the magnet, it will have less potential energy because of the short distance it will take to travel to the magnet. Although the purple toy is now closer to the magnet, it is still pretty far and will have a somewhat big potential energy when traveling to the magnet.
Explanation:
Hey, I'm in middle school and I had the same question for a science test, I'm not sure if I am correct but this is what I have.
Answer:
Guar gum
sodium nitrite
artificial food colorings
monosodium glutamate
etc
Answer:
0.302L
Explanation:
<em>...97.1mL of 1.21m M aqueous magnesium fluoride solution</em>
<em />
In this problem the chemist is disolving a solution from 1.21mM = 1.21x10⁻³M, to 389μM = 389x10⁻⁶M. That means the solution must be diluted:
1.21x10⁻³M / 389x10⁻⁶M = 3.11 times
As the initial volume of the original concentration is 97.1mL, the final volume must be:
97.1mL * 3.11 = 302.0mL =
0.302L