Once the substance stops dissolving, the system is at equlibrium with the water and the undissolved salt now, if it is in the process of dissolving because it is completely soluble but has not been able to completely dissolve, it is not at equilibrium
Answer: CoBr3 < K2SO4 < NH4 Cl
Justification:
1) The depression of the freezing point of a solution is a colligative property, which means that it depends on the number of particles of solute dissolved.
2) The formula for the depression of freezing point is:
ΔTf = i * Kf * m
Where i is the van't Hoof factor which accounts for the dissociation of the solute.
Kf is the freezing molal constant and only depends on the solvent
m is the molality (molal concentration).
3) Since, you are assuming equal concentrations and complete dissociation of the given solutes, the solute with more ions in the molecular formula will result in the solution with higher depression of the freezing point (lower freezing point).
4) These are the dissociations of the given solutes:
a) NH4 Cl (s) --> NH4(+)(aq) + Cl(-) (aq) => 1 mol --> 2 moles
b) Co Br3 (s) --> Co(3+) (aq) + 3Br(-)(aq) => 1 mol --> 4 moles
c) K2SO4 (s) --> 2K(+) (aq) + SO4 (2-) (aq) => 1 mol --> 3 moles
5) So, the rank of solutions by their freezing points is:
CoBr3 < K2SO4 < NH4 Cl
The effects<span> of A</span>nthrax<span> on the </span>body<span> include, shock, difficulty breathing, and intestinal inflammation. In serious cases, A</span>nthrax<span> can lead to inflammation of the areas surrounding the brain, and spinal cord, causing severe bleeding. This illness could also lead to death.
I hope this helps!</span>
Answer:
The identity of an atom is determined my the number of <u>protons</u>. This is the <u>atomic number</u>.
The particle(s) found inside the nucleus are called <u>protons and neutrons</u>. Their combined mass is referred to as <u>the mass number</u>.
Isotopes have the same number of <u>protons</u>, but different number of <u>neutrons</u>.