<h2>MARK BRAINLIEST</h2>
For this assignment, you will develop several models that show how light waves and mechanical waves are reflected, absorbed, or transmitted through various materials. For each model, you will write a brief description of the interaction between the wave and the material. You will also compose two <u><em>typewritten</em></u> paragraphs. The first will compare and contrast light waves interacting with different materials. The second will explain why materials with certain properties are well suited for particular functions.
<h2><u>Background Information</u></h2>
A wave is any disturbance that carries energy from one place to another. There are two different types of waves: mechanical and electromagnetic. A mechanical wave carries energy through matter. Energy is transferred through vibrating particles of matter. Examples of mechanical waves include ocean waves, sound waves, and seismic waves. Like a mechanical wave, an electromagnetic wave can also carry energy through matter. However, unlike a mechanical wave, an electromagnetic wave does not need particles of matter to carry energy. Examples of electromagnetic waves include microwaves, visible light, X-rays, and radiation from the Sun.
Answer:
load (l)=400N
Effort(E)=50N
mechanical advantage (MA)= load ÷Effort
(ma)=400÷50
(ma)=8
Explanation:
I copy pasted from the answer from the same question. Remember to first check if ur question is there
Objects can have the same mass (but different <span>compositions). Only mass or volume cannot tell you if the object is solid or vo</span>lumes) or same volume (but different masses)
Answer:
Total height (s) = 176.4 m
Explanation:
Given:
Initial velocity (u) = 0 m/s
Time taken (t) = 6 sec
Acceleration due to gravity = 9.8 m/s²
Find:
Total height (s)
Computation:
s = ut + [1/2]gt²
s = (0)(6) + [1/2][9.8][6²]
s = 176.4 m
Total height (s) = 176.4 m