Answer:


Explanation:
if

and g=9.81 m/s2=32.16 ft/s2
and
W=m*g
we can just replace de mass and gravity and we have


Answer:
B. d(low)=4d(high)
Explanation:
Frequency of a string can be written as;
f = v/2L
Where;
v = sound velocity
L = string length
Frequency can be further expanded to;
f = v/2L = (1/2L)√(T/u) ......1
Where;
m= mass,
u = linear density of string,
T = tension
p = density of string material
A = cross sectional area of string
d = string diameter
u = m/L .......2
m = pAL = p(πd^2)L/4 (since Area = (πd^2)/4)
f = (1/2L)√(T/u) = (1/2L)√(T/(m/L))
f = (1/2L)√(T/((p(πd^2)L/4)/L))
f = (1/2L)√(4T/pπd^2)
f = (1/L)(1/d)√(4T/pπ)
Since the length of the strings are the same, the frequency is inversely proportional to the string diameter.
f ~ 1/d
So, if
4f(low) = f(high)
Then,
d(low) = 4d(high)
Answer: 1100 ft lb/s and 2 H.P
Explanation:
To calculate for the power developed in the elevator motor in ft.lb/s, we multiply the distance and the weight of the elevator and divide the product by the time.
Power = (10 ft)(2200 lb) / 20 s = 1100 ft.lb/s
Next, convert the calculated value to HP.
1100 ft.lb/s x (1 HP/ 550 ft.lb/s) = 2 HP
hope this helps please give brainliest!
Answer:
The answer is 5
Explanation:
The maximum interference is:
m * λ = d * sinθi
Where m = 0,1,2,3,...
The first minimum diffraction is:
λ = a * sinθd
|sinθi| < sinθd
Where
(|m| * λ)/d < λ/a
|m| < d/a = 2.5
|m|max = 2
It can be concluded that coherent monochromatic light passes through the slits, therefore the maximum number of interference is 5.