Answer:
<h2><em>
6000 counts per second</em></h2>
Explanation:
If a sample emits 2000 counts per second when the detector is 1 meter from the sample, then;
2000 counts per second = 1 meter ... 1
In order to know the number of counts per second that would be observed when the detector is 3 meters from the sample, we will have;
x count per second = 3 meter ... 2
Solving the two expressions simultaneously for x we will have;
2000 counts per second = 1 meter
x counts per second = 3 meter
Cross multiply to get x
2000 * 3 = 1* x
6000 = x
<em></em>
<em>This shows that 6000 counts per second would be observed when the detector is 3 meters from the sample</em>
Answer:
The water is flowing at the rate of 28.04 m/s.
Explanation:
Given;
Height of sea water, z₁ = 10.5 m
gauge pressure,
= 2.95 atm
Atmospheric pressure,
= 101325 Pa
To determine the speed of the water, apply Bernoulli's equation;

where;
P₁ = 
P₂ = 
v₁ = 0
z₂ = 0
Substitute in these values and the Bernoulli's equation will reduce to;

where;
is the density of seawater = 1030 kg/m³

Therefore, the water is flowing at the rate of 28.04 m/s.
Answer:
Choice A: approximately
, assuming that the two pistons are connected via some confined liquid to form a simple machine.
Explanation:
Assume that the two pistons are connected via some liquid that is confined. Pressure from the first piston:
.
By Pascal's Principle, because the first piston exerted a pressure of
on the liquid, the liquid will now exert the same amount of pressure on the walls of the container.
Assume that the second piston is part of that wall. The pressure on the second piston will also be
. In other words:
.
To achieve a force of
, the surface area of the second piston should be:
.
The reason as to why the substage condenser does not need to be included in computing the magnification and the only component needed is the ocular lens and the objective lenses is because the condenser is only responsible for gathering light and it does not contribute with the magnification of the object under the microscope.