The net current in the conductors and the value of the line integral

- The resultant remains same 3.2 *10^4 Tm
This is further explained below.
<h3>What is the net current in the conductors?</h3>
Generally,
To put it another way, the total current In flowing across a surface S (contained by C) is proportional to the line integral of the magnetic B-field (in tesla, T).


B)
In conclusion, It is possible for the line integral to go around the loop in either direction (clockwise or counterclockwise), the vector area dS to point in either of the two normal directions and Ienc, which is the net current passing through the surface S, to be positive in either direction—but both directions can be chosen as positive in this example. The right-hand rule solves these ambiguities.
The resultant remains the same at 3.2 *10^4 Tm
Read more about conductors
brainly.com/question/8426444
#SPJ1
Answer:
Speed and direction affect pitch.
The distance is just the perimeter of the rectangle:
P = 2(411) + 2(475)
P = 822 + 950
P = 1772m
Answer:
a) 4458K b) 5048K, c) 6166K, d) 5573K
Explanation:
The temperature of the stars and many very hot objects can be estimated using the Wien displacement law
T = 2,898 10⁻³ [m K]
T = 2,898 10⁻³ /
a) indicate that the wavelength is
Lam = 650 nm (1 m / 109 nm) = 650 10⁻⁹ m
Lam = 6.50 10⁻⁷ m
T = 2,898 10⁻³ / 6.50 10⁻⁷
T = 4,458 10³ K
T = 4458K
b) lam = 570 nm = 5.70 10⁻⁷ m
T = 2,898 10⁻³ / 5.70 10⁻⁷
T = 5084K
c) lam = 470 nm = 4.70 10⁻⁷ m
T = 2,898 10⁻³ / 4.7 10⁻⁷
T = 6166K
d) lam = 520 nm = 5.20 10⁻⁷ m
T = 2,898 10⁻³ / 5.20 10⁻⁷
T = 5573K