Answer:
The acceleration of an object depends directly upon the net force acting upon the object, and inversely upon the mass of the object. As the force acting upon an object is increased, the acceleration of the object is increased. As the mass of an object is increased, the acceleration of the object is decreased.
Explanation:
hope it helps pls give me brainless
First we will find the speed of the ball just before it will hit the floor
so in order to find the speed of the cart we will first use energy conservation
So by solving above equation we will have
now in order to find the momentum we can use
Newton's law of universal gravitation states that every point mass in the universe attracts every other point mass with a force that is directly proportional to the product of their masses, and inversely proportional to the square of the distance between them. Newton's law of universal gravitation states that every point mass in the universe attracts every other point mass with a force that is directly proportional to the product of their masses, and inversely proportional to the square of the distance between them.
Answer:
d = 76.5 m
Explanation:
To find the distance at which the boats will be detected as two objects, we need to use the following equation:
<u>Where:</u>
θ: is the angle of resolution of a circular aperture
λ: is the wavelength
D: is the diameter of the antenna = 2.10 m
d: is the separation of the two boats = ?
L: is the distance of the two boats from the ship = 7.00 km = 7000 m
To find λ we can use the following equation:
<u>Where:</u>
c: is the speed of light = 3.00x10⁸ m/s
f: is the frequency = 16.0 GHz = 16.0x10⁹ Hz
Hence, the distance is:
Therefore, the boats could be at 76.5 m close together to be detected as two objects.
I hope it helps you!
Answer: I think the answer is D.
Positively charged particles.