Answer: 20m/s.
Explanation:
Remember the second Newton's law:
F = a*m
This is:
The net force acting on an object is equal to the mass of the object times the acceleration of the object.
In this case, we have a force of 5N pushing the object to the right.
We also have a force of 5N pushing the object to the left.
These forces act on opposite directions.
Then the net force will be equal to the difference of these forces, this is:
F = 5N - 5N = 0N
Then the net force is 0N, then we have:
0N = m*a
0N/m = 0m/s^2 = a
This means that the acceleration of the object is 0, then the velocity of the object does not change.
This means that if the object was moving at a constant velocity of 20m/s, the velocity of the object will still be equal to 20m/s. (because the net force acting on the object is zero)
too much static electricity can cause a negative reaction such as the balloons repelling away from one another.
The displacement of Edward in the westerly direction is determined as 338.32 km.
<h3>What is displacement of Edward?</h3>
The displacement of Edward can be determined from different methods of vector addition. The method applied here is triangular method.
The angle between the 200 km north west and 150 km west = 60 + 90 = 150⁰
The displacement is the side of the triangle facing 150⁰ = R
R² = a² + b² - 2abcosR
R² = 150² + 200² - (2x 150 x 200)xcos(150)
R² = 62,500 - (-51,961.52)
R² = 114,461.52
R = 338.32 km
Learn more about displacement here: brainly.com/question/321442
#SPJ1
Answer:
Work is done on the object.
Explanation: