The energy of a photon is given by:

where h is the Planck constant and f is the photon frequency.
We know the energy of the photon,

, so we can rearrange the equation to calculate the frequency of the photon:

And now we can use the following relationship between frequency f, wavelength

and speed of light c to find the wavelength of the photon:
Answer is B- 200 m
Given:
m (mass of the car) = 2000 Kg
F = -2000 N
u(initial velocity)= 20 m/s.
v(final velocity)= 0.
Now we know that
<u>F= ma</u>
Where F is the force exerted on the object
m is the mass of the object
a is the acceleration of the object
Substituting the given values
-2000 = 2000 × a
a = -1 m/s∧2
Consider the equation
<u>v=u +at</u>
where v is the initial velocity
u is the initial velocity
a is the acceleration
t is the time
0= 20 -t
t=20 secs
s = ut +1/2(at∧2)
where s is the displacement of the object
u is the initial velocity
t is the time
v is the final velocity
a is the acceleration
s= 20 ×20 +(-1×20×20)/2
<u>s= 200 m</u>
Renewable energy
<u>Advantages :-</u>
1. Easily regenerate
2. Boost economic growth
3. Easily available
4. Support environment
5. Low maintenance cost
<u>Disadvantages :-</u>
1. Weather dependency
2. High installation cost
3. Noise caused by wind energy
4. Fluctuation problem (solar)
5. Intermittency issue (wind)
Non-renewable energy
<u>Advantages :-</u>
1. Concentrated energy source
2. Reliable energy source
3. Can be built anywhere
4. No radioactive waste
<u>Disadvantages :-</u>
1. Produces greenhouse gases
2. Contributes to global warming
3. Produces acid rain
4. Harmful to environment when they are burnt
<em>I hope this helps.....</em>
Sorry I’m only in kindergarten is it 10kg must be supplied???