Answer:
M1 V1 = M1 V2 + M2 V3 conservation of momentum
V2 = (M1 V1 - M2 V3) / M1 where V2 = speed of M1 after impact
V2 = (3 * 9 - 1.5 * 5) / 9 = (27 - 7.5) / 9 = 2.17 m/s
Note: All speeds are in the same direction and have the same sign
The solubility of gases in liquids increases with the increase in pressure.
3 bulbs are in series and if the same 3 bulbs are in parallel with the same battery then the bulbs that are connected in parallel will be dimmer
<h3>What is power?</h3>
The rate of doing work is known as power. The Si unit of power is the watt.
Power =work/time
The mathematical expression for the electric power is as follows
P = VI
The same current flows through both bulbs when they are connected in series. A greater voltage drop across the bulb with the higher resistance will result in higher power dissipation and brightness. In the case of the parallel combination, the bulb will be dimmer
Thus, If the same three bulbs are connected in series and parallel with the same battery, the parallelly connected bulbs will be dimmer, therefore the correct option is A
Learn more about power from here
brainly.com/question/3854047
#SPJ1
Answer:
Solving for time :
(There are 4 formulas from linear motion. These formulas are very helpful as it allows us to prevent complicated calculations. Choose among the four that has : 1. The most constants known
2. The unknown constant that we want to solve)
s = (1/2)(u+v)t <--- one of the formulas
from linear motion
s (distance) = 0.05m
u (initial velocity) = 100m/s
v (final velocity) = 0 m/s (it stops)
t (time taken for change in velocity) = to be found
0.05 = (1/2)(100+0)t
t = 0.001 seconds
Solving for the resistant force :
Since the bullet hits the bag with an impulsive force and stops, the force that stops the bullet is the resistant force.
When the bullet stops :
F net = 0
F r = F imp
F r = (mu -mv)/t
F r = (0.01x100-0.01x0)/0.001
F r = 1/0.001
F r = 1000N