Answer is C.
Optical microscope involves passing visible light transmitted through or reflected from the sample through a single or multiple lenses to allow a magnified view of the sample.
Answer:
θ_p = 53.0º
Explanation:
For reflection polarization occurs when a beam is reflected at the interface between two means, the polarization in total when the angle between the reflected and the transmitted beam is 90º
Let's write the transmission equation
n1 sin θ₁ = ne sin θ₂
The angle to normal (vertcal) is
180 = θ2 + 90 + θ_p
θ₂ = 90 - θ_p
Where θ₂ is the angle of the transmitted ray θ_p is the angle of the reflected polarized ray
We replace
n1 sin θ_p = n2 sin (90 - θ_p)
Let's use the trigonometry relationship
Sin (90- θ_p) = sin 90 cos θ_p - cos 90 sin θ_p = cos θ_p
In the law of reflection incident angle equals reflected angle,
ni sin θ_p = ns cos θ_p
n₂ / n₁ = sin θ_p / cos θ_p
n₂ / n₁ = tan θ_p
θ_p = tan⁻¹ (n₂ / n₁)
Now we can calculate it
The refractive index of air is 1 (n1 = 1) the refractive index of seawater varies between 1.33 and 1.40 depending on the amount of salts dissolved in the water
n₂ = 1.33
θ_p = tan⁻¹ (1.33 / 1)
θ_p = 53.0º
n₂ = 1.40
θ_p = tan⁻¹ (1.40 / 1)
Tep = 54.5º
Answer:
Range of wavelength will be to
Explanation:
We have given range of frequency is 400-560 Hz
Speed of the light
We have to find the range of the wavelength of signal transmitted
Ween know that velocity is given by , here is wavelength and f is frequency
So for 400 Hz frequency wavelength will be
And wavelength for frequency 560 Hz
So range of wavelength will be to
The indicated data are of clear understanding for the development of Airy's theory. In optics this phenomenon is described as an optical phenomenon in which The Light, due to its undulatory nature, tends to diffract when it passes through a circular opening.
The formula used for the radius of the Airy disk is given by,
Where,
Range of the radius
wavelength
f= focal length
Our values are given by,
State 1:
State 2:
Replacing in the first equation we have:
And also for,
Therefor, the airy disk radius ranges from to
An external force that is being applied in the direction of the displacement