The median of the following numbers is 14
Order the numbers from least to greatest
Since median means middle mark off a number on each side until there is one left. That will be your answer
If it is an even amount of numbers than take the middle two numbers and find the average (mean)
To do so add the numbers and divide by two
Given:


To find:
Whether f(x) and g(x) are inverse of each other by using that f(g(x)) = x and g(f(x)) = x.
Solution:
We know that, two function are inverse of each other if:
and 
We have,


Now,
![[\because g(x)=\dfrac{8}{x}]](https://tex.z-dn.net/?f=%5B%5Cbecause%20g%28x%29%3D%5Cdfrac%7B8%7D%7Bx%7D%5D)
![[\because f(x)=\dfrac{8}{x}]](https://tex.z-dn.net/?f=%5B%5Cbecause%20f%28x%29%3D%5Cdfrac%7B8%7D%7Bx%7D%5D)


Similarly,
![[\because f(x)=\dfrac{8}{x}]](https://tex.z-dn.net/?f=%5B%5Cbecause%20f%28x%29%3D%5Cdfrac%7B8%7D%7Bx%7D%5D)
![[\because g(x)=\dfrac{8}{x}]](https://tex.z-dn.net/?f=%5B%5Cbecause%20g%28x%29%3D%5Cdfrac%7B8%7D%7Bx%7D%5D)


Since,
and
, therefore, f(x) and g(x) are inverse of each other.
Initial salary = $50,000 .
Rate of raise = 5% each year.
Therefore, each next year salary would be 105% that is 1.05 times.
5% of 50,000 = 0.05 × 50000 = 2500.
Therefore raise is $2500 each year.
According to geometric sequence first term 50000 and common ratio 1.05.
Applying geometric sequence formula

1) 
2) In order to find salary in 5 years we need to plug n=5, we get

= 50000(1.21550625)
<h3>=$60775.3125.</h3>
3) In order to find the total salary in 10 years we need to apply sum of 10 terms formula of a geometric sequence.

Plugging n=10, a = 50000 and r= 1.05.


= 628894.62678.
<h3>Therefore , you will have earned $ 628894.62678 in total salary by the end of your 10th year.</h3>
The answer tothis question is two