In calculus, the squeeze theorem, also known as the pinching theorem, the sandwich theorem, the sandwich rule, the police theorem, the between theorem and sometimes the squeeze lemma, is a theorem regarding the limit of a function. In Italy, the theorem is also known as theorem of carabinieri.
the answer is B because to get the total cost, first divide 450 by 50. This gives us 9. We then multiply 9 by $600 to get a total of $5400.
X^2 + y^2 = 8
X-y=0 so x = y
replace x = y into X^2 + y^2 = 8
y^2 + y^2 = 8
2y^2 = 8
y^2 = 8/2
y^2 = 4
y = - 2 and y = 2
because x = y
so x = - 2 and x = 2
solutions:
x= - 2 and x = + 2
y= - 2 and y = + 2
Hey there :)
![-7 \frac{2}{3} = - \frac{23}{3}](https://tex.z-dn.net/?f=-7%20%5Cfrac%7B2%7D%7B3%7D%20%3D%20-%20%5Cfrac%7B23%7D%7B3%7D%20)
![-5 \frac{1}{2} = -\frac{11}{2}](https://tex.z-dn.net/?f=-5%20%5Cfrac%7B1%7D%7B2%7D%20%3D%20-%5Cfrac%7B11%7D%7B2%7D%20)
![8 \frac{3}{4} = \frac{35}{4}](https://tex.z-dn.net/?f=8%20%5Cfrac%7B3%7D%7B4%7D%20%3D%20%5Cfrac%7B35%7D%7B4%7D)
![- \frac{23}{3} - \frac{11}{2} + \frac{35}{4}](https://tex.z-dn.net/?f=-%20%5Cfrac%7B23%7D%7B3%7D%20-%20%5Cfrac%7B11%7D%7B2%7D%20%2B%20%5Cfrac%7B35%7D%7B4%7D%20)
We need to change all fractions to have a common denominator
Lets see:
Multiples of 2: 2 , 4 , 6 , 8 , 10 , 12
Multiplies of 3: 3 , 6 , 9 , 12
Multiplies of 4: 4 , 8, 12
The common denominator is 12
2 x 6 = 12
3 x 4 = 12
4 x 3 = 12
=
![-\frac{23(4)}{3(4)} - \frac{11(6)}{2(6)} + \frac{35(3)}{4(3)}](https://tex.z-dn.net/?f=%20-%5Cfrac%7B23%284%29%7D%7B3%284%29%7D%20-%20%20%5Cfrac%7B11%286%29%7D%7B2%286%29%7D%20%2B%20%20%5Cfrac%7B35%283%29%7D%7B4%283%29%7D%20)
=
![- \frac{92}{12} - \frac{66}{12} + \frac{105}{12}](https://tex.z-dn.net/?f=-%20%20%5Cfrac%7B92%7D%7B12%7D%20-%20%20%5Cfrac%7B66%7D%7B12%7D%20%2B%20%20%5Cfrac%7B105%7D%7B12%7D%20)
We need to add the numerators while keeping the same denominator
=
![- \frac{53}{12}](https://tex.z-dn.net/?f=-%20%5Cfrac%7B53%7D%7B12%7D%20)
=
Answer:
a = 22
Step-by-step explanation:
![cot \: 4a = tan \: (a - 20)....(given) \\ \\ \implies \: tan(90 - 4a) = tan \: (a - 20) \\ [\because \: cot \theta = tan(90 \degree - \theta) ]\\ \\ \implies (90 - 4a) = tan(a - 20) \\ \\ \implies \: 90 + 20 = 4a + a \\ \\\implies \: 110 = 5a \\ \\ \implies \: a = \frac{110}{5} \\ \\ \huge \red{ \boxed{\implies \: a = 22}}](https://tex.z-dn.net/?f=cot%20%5C%3A%204a%20%3D%20tan%20%5C%3A%20%28a%20-%2020%29....%28given%29%20%5C%5C%20%20%5C%5C%20%20%5Cimplies%20%5C%3A%20tan%2890%20-%204a%29%20%3D%20tan%20%5C%3A%20%28a%20-%2020%29%20%5C%5C%20%20%5B%5Cbecause%20%5C%3A%20cot%20%5Ctheta%20%3D%20tan%2890%20%5Cdegree%20-%20%20%5Ctheta%29%20%5D%5C%5C%20%20%5C%5C%20%5Cimplies%20%2890%20-%204a%29%20%3D%20tan%28a%20-%2020%29%20%5C%5C%20%5C%5C%20%20%5Cimplies%20%5C%3A%2090%20%20%2B%2020%20%3D%204a%20%2B%20a%20%5C%5C%20%20%5C%5C%5Cimplies%20%5C%3A%20%20110%20%3D%205a%20%5C%5C%20%20%5C%5C%20%5Cimplies%20%5C%3A%20a%20%3D%20%20%5Cfrac%7B110%7D%7B5%7D%20%20%5C%5C%20%20%5C%5C%20%5Chuge%20%5Cred%7B%20%5Cboxed%7B%5Cimplies%20%5C%3A%20%20a%20%3D%2022%7D%7D)